Effect of Fe-enrichment on seismic properties of perovskite and post-perovskite in the deep lower mantle

S.M. Dorfman1 and T.S. Duffy2

1Earth and Planetary Science Laboratory, Ecole polytechnique fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland.
E-mail: susannah.dorfman@epfl.ch
2Department of Geosciences, Princeton University, Princeton, NJ 08544, USA

Accepted 2014 February 3. Received 2014 January 27; in original form 2013 October 22

SUMMARY

Recent experimental measurements of the equation of state of perovskites and post-perovskites in the (Mg,Fe)SiO\textsubscript{3} and (Mg,Fe,Al)(Fe,Al,Si)O\textsubscript{3} systems over a wide range of iron contents are used to constrain the effects of Fe and Al on density and bulk modulus of these phases at deep mantle pressures. The density of Fe-bearing perovskite follows a linear relationship with Fe-content at a representative mid-mantle depth of 1850 km (80 GPa): ρ_{80} (g cm$^{-3}$) = 5.054(1) + 1.270(3)X_{Fe}. The bulk modulus of silicate perovskite is not sensitive to Fe-content and follows the relationship, K_{80} (GPa) = 54(2) + 12(5)X_{Fe}. The velocity heterogeneity parameter, $\partial\ln V_p/\partial X_{Fe}$, determined by experimental values for the bulk sound speed is 0.10(1), in agreement with theory and the behaviour of other Fe-bearing silicates. Near the core–mantle boundary, Fe-rich post-perovskite is observed to be more compressible than the Mg-end-member, in contrast to theoretical predictions. From experimental data, the densities of perovskite and post-perovskite at 125 GPa (2700 km depth) are $\rho_{125,pPv}$ (g cm$^{-3}$) = 5.426(11) + 1.38(4)X_{Fe} and $\rho_{125,pPv}$ (g cm$^{-3}$) = 5.548(1) + 1.41(3)X_{Fe}. The density contrast across the post-perovskite transition is ~2 per cent, irrespective of Fe-content, but the contrast in bulk sound speed increases with Fe-content. Al-rich silicates exhibit no significant differences in density or compressibility relative to Al-free silicates, but may be responsible for seismic heterogeneities due to differences in the depth and width of the post-perovskite transition. Observations of increased densities in large low shear velocity provinces and ultra-low-velocity zones may be consistent with local iron enrichment from Mg#90 to Mg# 78–88 and Mg# <50, respectively.

Key words: Composition of the mantle; Equations of state; High-pressure behaviour.

1 INTRODUCTION

Chemical heterogeneity in the deep lower mantle has been constrained by geophysical observations and dynamic simulations (Stixrude & Lithgow-Bertelloni 2012). Thermal variation alone cannot explain observations of antCorrelated bulk and shear wave speeds in the deep mantle (e.g. Masters et al. 2000). In addition, seismic images of large (~1500 km) low shear velocity provinces (LLSVPs) beneath the Pacific and Africa have features such as sharp lateral gradients at their edges that are suggestive of compositional heterogeneity (McNamara & Zhong 2004, 2005). From normal mode data, Ishii & Tromp (1999) reported that regions of high density were associated with low velocities in the two plume provinces. LLSVPs could represent hot dense piles of compositionally distinct material or buoyant thermal superplumes and these models would be expected to have different degrees of chemical heterogeneity and distinct density structures.

The Earth’s core–mantle boundary region (D’) also exhibits highly-variable localized structure and is therefore also likely to be chemically heterogeneous (Garnero 2000). Heterogeneities could possibly form due to accumulations of subducted crust (Dobson & Brodholt 2005; Hutko et al. 2006), remnant primordial material (Labrosse et al. 2007) or core–mantle interaction (Knittle & Jeanloz 1989, 1991). Waveform modelling has led to the identification of ultra-low velocity zones (ULVZs) just above the core–mantle boundary (Garnero & Helmberger 1995). These ULVZs tend to be distributed at the margins of LLSVPs and exhibit strong reductions (~10 per cent) in P- and S-wave velocities. ULVZs are thin and typically localized (~5–40 km thick and ~100 km wide) with a large increase in density (~10 per cent) compared with surrounding material (Rost & Garnero 2006). These properties could possibly be signatures of dense melts (Williams & Garnero 1996) or iron-enriched solid mantle phases (Mao et al. 2006; Wicks et al. 2010). The role of iron is thus one of the major factors...
to consider in assessing compositional heterogeneity in the lower mantle.

Determining the behaviour of iron in the lower mantle’s dominant phase, (Mg,Fe)SiO$_3$ perovskite, is complex because Fe can occupy different structural sites with different valence and spin states, which may differently affect seismic properties (e.g. Caracas 2010a). In addition, Fe has been observed to affect the depth and breadth of the transition of mantle perovskite to the post-perovskite structure, with important implications for the phase assemblage near the core–mantle boundary (Murakami et al. 2004; Oganov & Ono 2004; Mao et al. 2004, 2005). Partitioning of Fe between multiple Fe-bearing mantle phases is also important to phase transformations and physical properties (Grocholski et al. 2012). However, modelling of the effect of Fe on mantle phases has generally been simplified in studies to date. For example, Trampert et al. (2001) and Mattern et al. (2005) constructed lower-mantle mineral models in which Fe affects the thermoelastic properties of silicate perovskite only through its effect on the molar volume at ambient pressure, which is far from thermodynamic stability and so can exhibit considerable scatter among experimental determinations (Kiefer et al. 2002; Tange et al. 2009). Recent experimental data on Fe-bearing mantle silicates at mantle pressures has allowed improved modelling of the complexity of Fe-dependence of elastic properties (Nakagawa et al. 2012).

Compression studies using X-ray diffraction as a probe provide many of the existing experimental constraints on elasticity of lower-mantle materials. In this work, we synthesize experimental equation of state measurements on perovskites and post-perovskites with a wide range of compositions and compare with theoretical calculations to assess the current understanding of the equation of state of deep mantle silicates. We discuss the dependence of density and seismic wave velocity on Fe- and Al-content in perovskite and post-perovskite. We investigate the implications of these chemical effects for deep lower-mantle heterogeneities.

2 ANALYSIS

A number of recent studies have carried out 300-K equation of state measurements on perovskite and post-perovskite phases synthesized in the (Mg,Fe)SiO$_3$ and (Mg,Fe,Al)Fe,Al,SiO$_3$ systems (Walter et al. 2004; Guignon et al. 2007; Lundin et al. 2008; Nishio-Hamane et al. 2008; Shim et al. 2008; Nishio-Hamane & Yagi 2009; Catalli et al. 2010b, 2011; Shieh et al. 2011; Boffa Ballaran et al. 2012; Zhang et al. 2012; Dorfman et al. 2012b, 2013). These studies used synchrotron X-ray diffraction in the laser-heated diamond anvil cell (Duffy 2005) to synthesize the high-pressure phases and to measure their unit cell volumes as a function of pressure. The compositions studied involve a variety of cation substitutions and possible cation site occupancies. In particular, a number of these recent studies have focused on Fe- and Al-rich samples, thereby allowing compositional trends to be better constrained. The Fe fraction ($X_{Fe} = 2Fe/[Mg + Fe + Al + Si]$) over the combined A and B sites of the ABO$_3$ stoichiometries ranged from 0 to 0.75. In addition, compositions with Al$_2$O$_3$ contents as high as 25 mole per cent have been studied (Walter et al. 2004; Shieh et al. 2011; Boffa Ballaran et al. 2012; Dorfman et al. 2012b).

In most of these studies, the valence state of Fe in synthesized perovskites and post-perovskites was not measured directly. In-situ Mössbauer spectroscopy and ex-situ electron energy loss spectroscopy measurements of Fe$^{3+}$/ΣFe ratios in perovskites and post-perovskites synthesized from Al-free, Fe$^{2+}$-bearing starting materials range from 0.08 to 0.5, with a median value of 0.16 (McCammon 1997; Frost & Langenhorst 2002; Li et al. 2004; Jackson et al. 2005; Simmony et al. 2008; Mao et al. 2011b; Simmony et al. 2011). Al-content is well-known to promote higher Fe$^{3+}$/ΣFe in perovskite, typically 0.5–0.8 (McCammon 1997; Frost & Langenhorst 2002; Simmony et al. 2011). However, crystallographic differences observed between perovskites synthesized from (Mg,Fe$^{2+}$,Al)(Al,Si)O$_3$ and (Mg,Fe$^{3+}$)(Al,Si)O$_3$ compositions may indicate that ferrous iron can be preserved in aluminous perovskites (Dorfman et al. 2012b). The Fe$^{3+}$/ΣFe ratio in post-perovskite has been observed to be close to that of the starting material (Simmony et al. 2011). When discussing ferrous or ferric iron content in this work, we refer to measured compositions of starting materials.

In comparison of experimental studies at deep mantle conditions, a concern involves the consistency of pressure determination and hydrostatic stress conditions among different works (Fei et al. 2007; Dorfman et al. 2012a). The studies under consideration here all used an internal pressure standard for which the equation of state was determined with reference to shock compression or other data. Most of the studies (Lundin et al. 2008; Nishio-Hamane et al. 2008; Nishio-Hamane & Yagi 2009; Catalli et al. 2010b, 2011; Shieh et al. 2011; Dorfman et al. 2013, 2012b) used Au as an internal pressure standard; for the scales chosen in these studies (Tsuchiya 2003; Dewaele et al. 2004; Fei et al. 2007), errors due to pressure calibration differences are expected to be minimal (<1.5 GPa). In other studies, use of KCl, NaCl, MgO or Pt may lead to systematic differences in pressure determination. At Mbar pressures, the Pt and NaCl scales were observed to give pressures up to 5–10 GPa lower than Au (Dorfman et al. 2012a). As a result, studies using these other calibrants measured perovskite and post-perovskite volumes, V, systematically lower by up to 1.5 per cent. Differences in bulk modulus, K, due to pressure calibration are negligible with respect to other uncertainties. Systematic differences may also be observed in calibration and sample volumes due to non-hydrostatic stress in the diamond anvil cell. Most of the studies considered here used soft media such as Ne and laser annealing, which minimize non-hydrostatic stress (Dorfman et al. 2012a).

Pressure–volume data were fit to the Birch–Murnaghan equation (Birch 1947) to allow interpolation of volumes to common reference pressures. Densities, ρ, were calculated from volumes using the known chemical compositions of the samples. The isothermal bulk modulus, $K = -\partial^2V/\partial P^2$, was obtained at reference pressures from differentiation of the Birch–Murnaghan equation with respect to volume (Jackson 1998). The bulk sound velocity was calculated from K and ρ: $V_b = \sqrt{K/\rho}$. The difference between the adiabatic and isothermal bulk modulus is small relative to experimental uncertainties and was neglected. The corresponding expressions for the compressional (V_P) and shear (V_S) wave velocities are $V_P = \sqrt{(K + 4G/3)/\rho}$ and $V_S = \sqrt{G/\rho}$, where G is the shear modulus.

2.1 Perovskite

The pressure range of experimental volume compression data for (Mg,Fe)SiO$_3$ compositions was 0–100 GPa (Lundin et al. 2008; Dorfman et al. 2013) and for (Mg,Fe)$_2$Al$_2$Si$_2$O$_7$ was 0–150 GPa (Walter et al. 2004; Dorfman et al. 2012b) compositions (Fig. 1). (Mg,Fe)$_2$Al$_2$Si$_2$O$_7$ is the pyrope–almandine garnet system which transforms to single-phase perovskites ((Mg,Fe)$_{0.75}$Al$_{0.25}$)(Al$_{0.25}$Si$_{0.75}$)O$_3$ above 40–70 GPa (Irfune et al. 2001)).
et al. (2008) gives density and compressibility in good agreement by Catalli (2012b, 2013) have enabled us to provide tight constraints on Fe-rich compositions (Boffa Ballaran et al. 2012). The possible effect of an Fe spin transition on the equation of state of Fe3+-bearing perovskite samples has been observed by X-ray emission and Mössbauer spectroscopy techniques to undergo a transition to from high spin to low spin (Badro et al. 2004; Jackson et al. 2005; Catalli et al. 2010b; McCammon et al. 2010; Mao et al. 2011b) or intermediate spin (Lin et al. 2011b). A spin transition in perovskite has been observed to be associated with higher K for Fe-bearing perovskite (Fig. 2; Catalli et al. 2010b, 2011; Mao et al. 2011b). However, density functional theory calculations predict that any spin transition would have a small effect on the density and bulk modulus of the Fe-bearing perovskite B-site.

Figure 1. Volume differences between Fe- or Fe, Al-bearing perovskites and MgSiO3 perovskite (Lundin et al. 2008). Fe-bearing perovskite with FeSiO3 (Fs) from 9–74 per cent is shown in circles (Lundin et al. 2008; Dorfman et al. 2013). Perovskites synthesized from pyrope–almandine (Alm) compositions with 54 and 100 per cent Alm are displayed with diamonds (Dorfman et al. 2012b). Ten per cent FeAlO3 composition (Catalli et al. 2011) is shown in triangles. Curves shown are from Birch–Murnaghan equation of state fits.

Additional constraints on effects of Fe- and/or Al-incorporation on elastic properties of silicate perovskite have been provided by \textit{ab initio} calculations (Kariki et al. 2001; Kiefer et al. 2002; Wentzcovitch et al. 2004; Caracas & Cohen 2005; Li et al. 2005; Stackhouse et al. 2006; Tsuchiya & Tsuchiya 2006; Zhang & Oganov 2006; Bengtson et al. 2007; Caracas et al. 2010; Caracas 2010a,b; Hsu et al. 2010; Umemoto et al. 2010; Hsu et al. 2011a; Huang & Pan 2012; Metsue & Tsuchiya 2012; Tsuchiya & Wang 2013). Density functional theory is not limited by experimentally accessible conditions and can provide values for both bulk and shear properties but results can depend on the choice of exchange-correlation functional. For silicates, the general gradient approximation (GGA) can suffer from underbinding leading to underestimated elastic constants and overestimated volumes, while the local density approximation (LDA) tends to produce the reverse situation (Kiefer et al. 2002). Some density functional theory work has also included the potential effects of Fe spin transitions on elastic properties (Bengtson et al. 2007; Caracas et al. 2010; Caracas 2010a,b; Hsu et al. 2010, 2011a; Huang & Pan 2012; Metsue & Tsuchiya 2012; Tsuchiya & Wang 2013). The most recent of these studies employ a Hubbard correction (LSDA+U), thought to produce more accurate results for iron-bearing minerals at high pressure (Hsu et al. 2011b; Metsue & Tsuchiya 2012).

\textit{Ab initio} calculations for MgSiO3 perovskite predict densities that agree with experimental measurements to within 3 per cent (Fig. 2; Kiefer et al. 2002; Caracas & Cohen 2005; Umemoto et al. 2010; Metsue & Tsuchiya 2012). For Fe-bearing perovskite, the increase in ρ with Fe-content predicted by the LDA method is similar to experimental measurements but systematically offset to higher density, consistent with volume underestimated by LDA. However, the densities calculated for (Mg0.5Fe0.5)SiO3 and FeSiO3 compositions by Caracas & Cohen (2005) with the GGA method are significantly lower than experimental measurements.

The bulk modulus obtained from the Birch–Murnaghan equation fits to experimental volume data is insensitive to Fe-content or increases weakly (Fig. 2). A linear fit of bulk modulus at 80 GPa to composition, K_{bulk} (GPa) = 546(2) + 12(25)X_{\text{Fe}}, exhibits a stiffening of 2±4 per cent in K from X_{Fe}=0 to 100. These experimental data are consistent with the slope predicted by theoretical calculations (Kiefer et al. 2002; Caracas & Cohen 2005; Umemoto et al. 2010; Metsue & Tsuchiya 2012). Generally, in mantle silicates and oxides at ambient conditions, Mg,Fe-substitution only weakly affects the bulk modulus (Speziale et al. 2005). The adiabatic bulk moduli in the olivine–fayalite, enstatite–ferrosilite, pyrope–almandine and periclase–wüstite systems show less than a 7 per cent difference between the Fe end-member and the Mg end-member. More limited data on high-pressure silicates (wadsleyite, ringwoodite) also show a weak effect of Fe-substitution on bulk modulus (Mao et al. 2011a). Our results suggest that perovskites behave in a similar manner to other silicates.

The possible effect of an Fe spin transition on the equation of state and compressibility of perovskite has attracted much interest (Lin et al. 2013). Both Fe2+- and Fe3+-bearing perovskite samples have been observed by X-ray emission and Mössbauer spectroscopy techniques to undergo a transition to from high spin to low spin (Badro et al. 2004; Jackson et al. 2005; Catalli et al. 2010b; McCammon et al. 2010; Mao et al. 2011b) or intermediate spin (Lin et al. 2008; McCammon et al. 2008). A spin transition in perovskite has been observed to be associated with higher K for Fe-bearing perovskite (Fig. 2; Catalli et al. 2010b, 2011; Mao et al. 2011b). However, density functional theory calculations predict that any spin transition would have a small effect on the density and bulk modulus of
Effect of Fe-enrichment on the deep lower mantle

Figure 2. (a) At 80 GPa and 300 K, density, bulk modulus and seismic wave propagation speeds for perovskites with varying Fe, Al-content determined from experimental data (Walter et al. 2004; Murakami et al. 2007b; Lundin et al. 2008; Nishio-Hamane et al. 2008; Shim et al. 2008; Catalli et al. 2010b, 2011; Mao et al. 2011b; Boffa Ballaran et al. 2012; Dorfman et al. 2012b; Murakami et al. 2012; Dorfman et al. 2013). Bold green line fits are shown to Fe$^{2+}$-bearing compositions. (b) Density functional theory results at 80 GPa and 0 K for (Mg,Fe)SiO$_3$ perovskites from LDA (Kiefer et al. 2002; Umemoto et al. 2010; Hsü et al. 2011a; Metsue & Tsuchiya 2012) and GGA (Caracas & Cohen 2005).

Fe$^{3+}$-bearing perovskites (Fig. 2; Umemoto et al. 2010; Hsü et al. 2011a; Metsue & Tsuchiya 2012).

Fe$^{3+}$-bearing compositions (Mg$_{0.9}$Fe$_{0.1}$Al$_{0.1}$SiO$_3$) and (Mg$_{0.9}$Fe$_{0.5}$SiO$_3$) may exhibit a high-to-low spin transition at 55–70 GPa (Catalli et al. 2010b, 2011). The transition was associated with a loss of spin moment observed by X-ray emission spectroscopy, a change in Mössbauer parameters, volume collapse and decrease in compressibility at higher pressures. Other experiments showed no difference in compressibility between MgSiO$_3$ and (Mg$_{0.85}$Fe$_{0.15}$Al$_{0.15}$Si$_{0.85}$)O$_3$ perovskites (Nishio-Hamane et al. 2008), and no discontinuities in the compression of (Mg$_{0.60}$Fe$_{2.03}$Fe$_{0.38}$Si$_{0.62}$Al$_{0.36}$)O$_3$ perovskite single crystals (Boffa Ballaran et al. 2012). Some differences between these observations may be explained by site occupancy of Fe and Al (Caracas 2010a).

The spin transition in Fe$^{3+}$ is expected to occur only in the Pv B-site (Hsü et al. 2011a), and site exchange between Fe and Al may occur only at high temperature.

In another recent experimental study, X-ray emission spectra for (Mg$_{0.75}$Fe$_{0.25}$)SiO$_3$ perovskite at 80–135 GPa were typical of a mixture of high- and low-spin Fe (Mao et al. 2011b). This Fe$^{2+}$-rich perovskite was observed to be much less compressible than MgSiO$_3$ perovskite (Fig. 2). A possible explanation for elevated values of the bulk modulus seen for some studies in Fig. 2 may be incomplete relaxation of differential stress. The bulk of the experimental and theoretical data suggest that spin transitions in either Fe$^{2+}$- or Fe$^{3+}$-bearing perovskite are unlikely to cause observable anomalies in density or bulk modulus in the lower mantle.
Experimentally derived values for the bulk sound speed, \(V_B \), at 80 GPa are shown in Fig. 2. Theoretical and most experimental studies report decreasing \(V_B \) with Fe-content. The fit to experimental data is \(V_B = 10.32(5) - 1.01(1) X_Fe \). The velocity heterogeneity parameter, \(\partial \ln V_B / \partial X_Fe \) (Karato & Karki 2001), from experimental data is 0.10(1), in agreement with theory (0.10, Kiefer et al. 2002) and at the lower end of values reported for other mantle silicates (Spezia et al. 2005). A slightly greater decrease in \(V_B \) is observed for Fe, Al-rich compositions, but the difference is within the uncertainty. While some studies (Catalli et al. 2010b; Mao et al. 2011b) have suggested spin transitions as a possible explanation for anticorrelation of bulk and shear velocities in the deep mantle, the trends observed in most of the experimental data for Fe-bearing Pv do not support this (Fig. 2).

Ab initio theoretical studies (Kiefer et al. 2002; Caracas & Cohen 2005) predict the effect of Fe incorporation on both bulk and shear moduli of perovskite, allowing the seismic velocities \(V_P \) and \(V_S \) to be determined, but involve inherent approximations. The consistency between theory and experiment in bulk sound speed for (Mg,Fe)SiO\(_3\) perovskite (Fig. 2) confirms the reliability of theoretical calculations of sound velocities at deep mantle pressures. This establishes more confidence in the application of theoretical values for not only \(V_B \), but also \(V_P \) and \(V_S \).

2.2 Post-perovskite

Volume compression data for (Mg,Fe)SiO\(_3\) post-perovskite have been reported from X-ray diffraction experiments at 110–155 GPa in several studies (Fig. 3; Shieh et al. 2006; Guignot et al. 2007; Shim et al. 2008; Nishio-Hamane & Yagi 2009; Zhang et al. 2012; Dorfman et al. 2013). For (Mg,Fe,Al)(Fe,Al,Si)O\(_3\) post-perovskites, data were measured from 95 to 175 GPa by Nishio-Hamane & Yagi (2009), Catalli et al. (2010a), Shieh et al. (2011) and Dorfman et al. (2012b). Following a similar procedure, these data were fit to equations of state to determine \(\rho \) and \(K \) and interpolated to a common reference pressure for comparison. In addition, equation of state data for perovskite compositions were extrapolated (for Fe, Al-rich perovskite, interpolated) to compare density and compressibility of these two phases. The reference pressure, 125 GPa, is near the post-perovskite transition pressure for MgSiO\(_3\) (Murakami et al. 2004) and corresponds to ~700 km depth, near the D' discontinuity.

At 125 GPa, \(\rho \) is also observed to increase linearly with Fe-content in post-perovskites (Fig. 4). Post-perovskite densities are fit to the following relationship:

\[
\rho_{125,\text{Pv}} \text{ (g cm}^{-3}\text{)} = 5.548(1) + 1.41(3)X_{Fe}.
\]

At this pressure, the perovskite phase is less dense, but the effect of Fe-content is similar:

\[
\rho_{125,\text{Pv}} \text{ (g cm}^{-3}\text{)} = 5.426(11) + 1.38(4)X_{Fe}.
\]

The density difference across the post-perovskite transition, \(\Delta \rho \), was measured to be 1.5 per cent (±0.1–0.7 per cent) at 125 GPa for both MgSiO\(_3\) (Komabayashi et al. 2008) and Alm54 compositions (Shieh et al. 2011; Dorfman et al. 2012b). A comparable difference of 2.2 per cent is observed between the linear fits of the densities of perovskite and post-perovskite across the (Mg,Fe)SiO\(_3\) join at 125 GPa (Fig. 4).

Theoretical calculations have also explored the behaviour of (Mg,Fe,Al)(Fe,Al,Si)O\(_3\) post-perovskite at deep lower-mantle conditions (Itatka et al. 2004; Caracas & Cohen 2005; Stackhouse et al. 2005; Wookey et al. 2005; Stackhouse et al. 2006; Tsuchiya & Tsuchiya 2006; Zhang & Oganov 2006; Caracas & Cohen 2007, 2008; Caracas 2011b; Hsu et al. 2012; Yu et al. 2012). These predictions have used LDA and GGA methods, and more recently, Hubbard U corrections to better model the electronic spin state of Fe. Calculated densities for the perovskite and post-perovskite phases at 125–136 GPa are in good agreement with experimental measurements at 125 GPa, though they yield a lower density contrast between the two phases for Fe-rich compositions: \(\Delta \rho \) is 1.4 per cent for MgSiO\(_3\) but only 0.5–1.1 per cent for FeSiO\(_3\) (Caracas & Cohen 2005; Wookey et al. 2005; Stackhouse et al. 2006). The slope of increase in \(\rho_{125} \) with \(X_{Fe} \) from LDA calculations is in better agreement with experimental data than GGA, which underestimates the effect of Fe. No significant difference was predicted between the densities of Fe\(^{3+}\)- and Fe\(^{3+}\)-bearing post-perovskite (Yu et al. 2012).

The bulk modulus of the post-perovskite phase was found to be more compressible with higher Fe-content (Zhang et al. 2012, Fig. 4) and this can be described by:

\[
K_{125,\text{Pv}} \text{ (GPa)} = 665(3) − 81(16)X_{Fe}.
\]

In contrast, data for the perovskite phase at this pressure show no significant change in bulk modulus with Fe-content. The fit to \(K_{125,\text{Pv}} \) for perovskites is 692(7) GPa + 30(52) GPa × \(X_{Fe} \). Experimental trends thus show increasing contrast in \(V_B \) between Pv and pPv with Fe-content (Fig. 4). From \(X_{Fe} = 0 \) to 40, the contrast in bulk sound speed between perovskite and post-perovskite phases increases from 3.1 to 6.4 per cent. This increase in contrast in \(V_B \) is reported in theoretical studies, which predict only a slight effect of Fe-content on \(K_{125,\text{Pv}} \) (Fig. 4).

Volume compression data observed by Shieh et al. (2011) for ((Mg,Fe)\(_{0.75}\)Al\(_{0.25}\))(Al\(_{0.25}\)Si\(_{0.75}\))O\(_3\) post-perovskites suggest a strong increase in bulk modulus for more Fe-rich post-perovskite, but additional data are needed to confirm this (Shieh et al. 2011). Although data for Fe\(^{3+}\) post-perovskite observed by Dorfman et al. (2013) is insufficient to determine bulk modulus, they also indicate higher values than predicted by the trend in Zhang et al. (2012). Possible mechanisms for an increase in bulk modulus for compositions with Fe\(^{3+}\)>40 could include a spin transition (e.g. Lin et al. 2008) or a

![Figure 3. Volume differences between Fe- or Fe, Al-bearing post-perovskites and MgSiO\(_3\) perovskite (Guignot et al. 2007). Fe-bearing post-perovskite with FeSiO\(_3\) (Fs) from 10–74 per cent are shown in circles (Nishio-Hamane & Yagi 2009; Zhang et al. 2012; Dorfman et al. 2013). Post-perovskites synthesized from pyrope-almandine (Alm) composition with 54 per cent Alm are displayed with diamonds (Shieh et al. 2011). Fifteen per cent FeAlO\(_3\) composition (Nishio-Hamane & Yagi 2009) is shown in triangles. Curves shown are from Birch–Murnaghan equation of state fits.](image-url)
Figure 4. (a) At 125 GPa and 300 K, density, bulk modulus and seismic wave propagation speeds for perovskites and post-perovskites with varying Fe, Al-content determined from experimental data (Mao et al. 2006; Shieh et al. 2006; Guignot et al. 2007; Murakami et al. 2007b, 2007a; Lundin et al. 2008; Shim et al. 2008; Nishio-Hamane & Yagi 2009; Catalli et al. 2010a; Mao et al. 2011b; Shieh et al. 2011; Boffa Ballaran et al. 2012; Dorfman et al. 2012b; Zhang et al. 2012; Dorfman et al. 2013). Colors of symbols have same meanings as in Fig. 2. Bold green line fits are shown to Fe$^{2+}$-bearing compositions (solid = perovskite, dashed = post-perovskite). (b) Density functional theory results at 125 GPa and 0 K for (Mg,Fe)SiO$_3$ perovskites and post-perovskites from LDA (Kiefer et al. 2002; Yu et al. 2012) and GGA (Caracas & Cohen 2005, 2008). Perovskite calculations are shown in solid black. Post-perovskite results are dotted and shown in green for Fe$^{2+}$-bearing compositions, while dotted red represent Fe$^{3+}$-bearing compositions.

Modification of the post-perovskite structure in Fe-rich compositions (Yamanaka et al. 2010).

A large decrease in shear modulus with Fe-content in post-perovskite was observed in a nuclear resonant inelastic X-ray scattering experiment by Mao et al. (2006). Based on measured partial phonon density of states of Fe and volume compression data, this experiment determined velocities V_P and V_S of an (Mg$_{0.6}$Fe$_{0.4}$)SiO$_3$ pPv lower than those of MgSiO$_3$ pPv by 11 and 38 per cent, respectively (Fig. 4). However, this technique is sensitive to the extrapolation from the partial phonon density of states which may lead to underestimation of velocities (Sturhahn & Jackson 2007). This has been the only experimental determination of bulk elastic wave velocities of an Fe-bearing silicate at deep mantle pressures.

Theoretical studies do not predict any stiffening of the bulk modulus or large decrease in elastic wave velocities at high Fe-content. A spin transition in post-perovskite was not predicted to occur at Earth-relevant pressures (Caracas & Cohen 2008). Overall, given the higher required experimental pressures and more limited data, it is perhaps not surprising that the observed variation in pPv properties with Fe-content is more uncertain and less consistent with theory. Further compression experiments on Fe-rich pPv are needed at deep lower-mantle pressures.
3 IMPLICATIONS FOR MANTLE HETEROGENEITIES

The volume or density is the property most precisely constrained by the experiments discussed above and is the driver of thermochemical convection in the mantle. The style of convection will depend on the relative contributions of chemical and thermal anomalies (Davaille 1999; Deschamps & Tackley 2008). A fundamental question is whether dense chemical heterogeneities are entrained in mantle convection or sequestered at the core–mantle boundary. To remain at the core–mantle boundary, chemical heterogeneities must be enriched enough in heavy elements (Fe) to offset thermal buoyancy. Assuming thermal and chemical effects are independent (Anderson & Hama 1999), for a hot, dense heterogeneity with neutral buoyancy, the thermal and chemical effects are equal:

$$-\alpha\rho\Delta T = \frac{\partial \rho}{\partial X_{Fe}} \Delta X_{Fe}. \quad (1)$$

Using the experimental results discussed above, we can calculate the Fe-enrichment necessary to balance thermal anomalies. The variation of thermal expansivity, α, with pressure and temperature for MgSiO$_3$ was estimated from density functional theory calculations (Wentzcovitch et al. 2004) yielding $\alpha\rho = 7.63 \times 10^{-5}$ g cm$^{-3}$/K for MgSiO$_3$ perovskite at 80 GPa and 2000 K. The difference in density due to temperature relative to that of end-member MgSiO$_3$ perovskite at 2000 K and 80 GPa was calculated for temperature anomalies of 200, 500 and 800 K (Fig. 5a). Based on the effect of Fe-content on density at this pressure (Fig. 2), a chemical heterogeneity with Mg# (Mg/(Mg + Fe)) = 87 would be neutrally buoyant in a Mg# 90 mantle if it is also 500 K hotter than the surrounding rock (Fig. 5b). This is consistent with long-term stability of dense heterogeneities in the deep mantle estimated by probabilistic tomography to be enriched in Fe by 2 per cent and warmer by 300 K (Trampert et al. 2004).

Based on current experimental data, the density contrast between perovskite and post-perovskite phases appears to be insensitive to temperature (Komabayashi et al. 2008) and Fe-content. Komabayashi et al. (2008) observed that the 1.5 per cent density contrast across the post-perovskite transition would be equivalent to the contrast due to a 1300 K difference in temperature. The 2.2 per cent density contrast shown by our (Mg,Fe)SiO$_3$ perovskite (Mao et al. 2013) would have an even greater impact of the post-perovskite transition on buoyancy (equivalent to a 1900 K thermal difference). This density contrast could also be produced in either silicate phase at 125 GPa by a ΔX_{Fe} of 9 Mg# (Mg# 81, relative to Mg#90, see Fig. 4). However, both Fe and Al contents have strong effects on the pressure and width of the post-perovskite transition, so the depth at which this density difference is observed and its sharpness will depend on composition. In Fe-rich compositions, a broad post-perovskite transition has been observed with a mixture of very Fe-rich post-perovskite and Fe-poor perovskite (Mao et al. 2004, 2005; Dorfman et al. 2013). A two-phase loop with difference in Fe-content between post-perovskite and perovskite $X_{Fe,Pv} - X_{Fe,Pv}$ as high as 0.6 (Dorfman et al. 2013) would have a high contrast in properties between these two phases at the base of the lower mantle: $\Delta \rho$ between adjacent perovskite and post-perovskite grains could be up to ~0.8 g cm$^{-3}$, or 13 per cent. This contrast could have important implications for the rheology of the D'' phase assemblage (Ammann et al. 2010).

The effect of Fe-incorporation on density of perovskite and post-perovskite can be used to determine composition of heterogeneities. Recent studies have suggested that observed lower-mantle densities (Ricolleau et al. 2009) and shear wave velocities (Murakami et al. 2012) are consistent with a Si-enriched composition, at least 93 per cent perovskite. Assuming a perovskitic lower mantle, density contrasts may be dominated by differences in Fe-content in perovskite or post-perovskite. Based on the trend in Fig. 2, an LLSVP with density up to 2–5 per cent greater than a Mg/(Mg + Fe) 90 per cent bulk mantle would be consistent with Mg/(Mg + Fe) of as low as 78–88 per cent in perovskite. A ULVZ at the core–mantle boundary 10 per cent denser than Mg#90 post-perovskite could be composed of Mg#50 post-perovskite. Based on theoretical (Wookey et al. 2005; Stackhouse et al. 2006; Caracas & Cohen 2008) and experimental (Mao et al. 2006) constraints on V_p, Mg#50 post-perovskite would propagate P waves ~6–20 per cent slower than Mg90 post-perovskite, similar to the 4–19 per cent V_p reduction observed by Rost & Garnero (2006). A FeSiO$_3$ post-perovskite would be 22 per cent denser than Mg#90. If regions are observed with greater density than this (e.g. Rost & Garnero 2006), they
must be both richer in Fe and poorer in Si, that is, enriched in denser (Mg,Fe)O or Fe metal. For compositions with more (Mg,Fe)O or other Si- or Al-rich phases, we must also consider the effects of these phases on chemical partitioning and phase equilibria. Ricouleau et al. (2009) observed that the partitioning of Fe between (Mg,Fe)O and silicate phases has a negligible effect on the density of the mantle. Similar modelling with our data set shows that varying the partitioning coefficient, K_{Fe}, of Fe between perovskite and magnesiowüstite over the range of experimental values (e.g. Azueze et al. 2008; Sakai et al. 2009) results in density differences of 0.1 per cent. Exchange of Fe with (Mg,Fe)O may have more important effects on the density and sharpness of the post-perovskite transition (Grocholski et al. 2012). In the (Mg,Fe)SiO$_3$ system, Fe-incorporation was observed to produce a shallower and broader phase transition (e.g. Dorfman et al. 2013), but partitioning of Fe into the oxide phase sharpens the transition. Al incorporation has been observed to deepen and broaden the post-perovskite transition such that Al-rich post-perovskite would not be observed in the lower mantle (Tateno et al. 2005; Dorfman et al. 2012b). Stabilization of perovskite in Fe, Al-rich heterogeneities could possibly produce anticorrelated V_0' and V'_S due to the 3–7 per cent higher V_0 observed in perovskite relative to post-perovskite of the same composition (at 125 GPa, Fig. 4). However, in compositions with sufficiently high Si, Al-content such as MORB, the presence of separate Si- and Al-bearing phases erased this effect on the post-perovskite transition (Grocholski et al. 2012).

In summary, experimental and theoretical data are compiled to determine the effects of Fe and/or Al incorporation on the elastic properties of (Mg,Fe,Al)(Fe,Al)SiO$_3$ perovskite and post-perovskite at representative mantle depths. Using recent volume compression data on perovskites with up to 75 per cent FeSiO$_3$, we provide constraints on the density, bulk modulus and bulk sound speed of Fe-bearing perovskites. Experimental compression data for perovskite are in good agreement with density functional theory calculations, showing a weak increase in the bulk modulus with Fe-content. For post-perovskite, experimental studies have observed a decrease in bulk modulus with Fe-content, in contrast to theory. Electronic spin transitions and differences in valence state of Fe in perovskite and post-perovskite phases are not expected to produce observable differences in seismic velocities in the lower mantle. Across the post-perovskite transition, the experimental data show a density increase of \sim2 per cent and an increasing contrast in bulk compressibility with Fe-content. The density contrast across the phase transition is comparable to the contrast due to decreasing Mg$^+$ by 9 or decreasing temperature by 1900 K. Al may increase the density of Fe-bearing perovskite by allowing paired substitution for Mg and Si, but can stabilize perovskite over post-perovskite.

ACKNOWLEDGEMENTS

The National Science Foundation and Carnegie-Department of Energy Alliance Center provided support for this research.

REFERENCES

