High-pressure phase transition in $Y_3Fe_5O_{12}$

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Phys.: Condens. Matter 27 405401

(http://iopscience.iop.org/0953-8984/27/40/405401)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.112.20.228
This content was downloaded on 24/09/2015 at 18:00

Please note that terms and conditions apply.
High-pressure phase transition in \(\text{Y}_3\text{Fe}_5\text{O}_{12} \)

C V Stan\(^1\), J Wang\(^2\), I S Zouboulis\(^3\), V Prakapenka\(^4\) and T S Duffy\(^2\)

\(^1\) Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
\(^2\) Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
\(^3\) Department of Physics, National Technical University of Athens, Athens, Greece
\(^4\) GeoSoilEnviroCARS, University of Chicago, Argonne National Lab, Argonne, IL 60439, USA

E-mail: cstan@princeton.edu

Received 15 July 2015, revised 17 August 2015
Accepted for publication 18 August 2015
Published 24 September 2015

Abstract

Yttrium iron garnet (YIG, \(\text{Y}_3\text{Fe}_5\text{O}_{12} \)) was examined up to 74 GPa and 1800 K using synchrotron x-ray diffraction in a diamond anvil cell. At room temperature, YIG remained in the garnet phase until abrupt amorphization occurred at 51 GPa, consistent with earlier studies. Upon laser heating up to 1800 K, the material transformed to a single-phase orthorhombic \(\text{GdFeO}_3 \) type perovskite of composition \(\text{Y}_{0.75}\text{Fe}_{0.25}\text{FeO}_3 \). No evidence of decomposition of the sample was observed. Both the room-temperature amorphization and high-temperature transformation to the perovskite structure are consistent with the behaviour of other rare earth oxide garnets. The perovskite sample was compressed between 28–74 GPa with annealing to 1450–1650 K every 3–5 GPa. Between 46 and 50 GPa, a 6.8% volume discontinuity was observed without any accompanying change in the number or intensity of diffraction peaks. This is indicative of a high-spin to low-spin electronic transition in \(\text{Fe}^{3+} \), likely in the octahedrally coordinated B-site of the perovskite. The volume change of the inferred spin transition is consistent with those observed in other rare earth ferric iron perovskites at high pressures.

Keywords: perovskite, spin transition, x-ray diffraction, rare earth garnet, high pressure

(Some figures may appear in colour only in the online journal)
shift were also observed indicating the likely presence of a spin transition accompanying the amorphization [15]. Finally, it was shown that the optical absorption edge vanishes in this pressure range, indicating transition to a metallic state [16]. Thus, YIG garnet simultaneously experiences structural amorphization, magnetic collapse, metallization, and a probable spin transition at 50 GPa.

High-pressure-temperature studies of YIG were conducted in the 1960s but were restricted to very low pressures and yielded contradictory results. One study reported the decomposition of YIG to YFeO$_3$ and Fe$_2$O$_3$ based on examination of samples recovered from compression to 0.4 GPa and 1123 K [17]. Here Fe$_2$O$_3$ was in the hematite structure and YFeO$_3$ was an orthorhombic perovskite. However, another study reported the synthesis of a single-phase ferrimagnetic perovskite (Y$_3$FeFe$_2$O$_{12}$ or (Y$_{0.75}$Fe$_{0.25}$)FeO) after compressing YIG to 2.52 GPa and 1473 K [18]. A related Mössbauer study demonstrated the existence of two distinct iron sites in the high-pressure YIG phase, supporting the observation of a single-phase perovskite [19]. The differing results obtained in these low-pressure studies have been attributed to different pressure transmitting media and to the fact that reduction of a small fraction of the Fe$^{3+}$ to Fe$^{2+}$ may favor formation of the single perovskite phase over the decomposition reaction [20].

In the present investigation we carried out x-ray diffraction experiments on Y$_3$Fe$_2$O$_{12}$ over a wide pressure-temperature range (28–75 GPa, up to 1800 K) using the laser-heated diamond anvil cell (DAC) to determine the phase stability, equation of state, and structural evolution of Y$_3$Fe$_2$O$_{12}$ at high pressures.

Methods

A polycrystalline Y$_3$Fe$_2$O$_{12}$ sample (Alfa Aesar, 99.9%) was characterized at ambient conditions by x-ray diffraction and Raman spectroscopy. The unit cell parameter was found to be $a = 12.37391(3)$ Å, consistent with literature values [18]. High-pressure experiments were carried out with a diamond anvil cell using 200 μm diameter culets. The sample was ground to a few micron grain size and mixed with 10 wt.% gold powder (Goodfellow Corp., 99.95%), which served as a laser absorber and pressure calibrant. Compressed pellets (5–10 μm thick) of this mixture were embedded between layers of NaCl, which acted as a thermal insulator and quasi-hydrostatic pressure medium. Samples were placed within 100 μm diameter holes drilled in Re gaskets that had been pre-indented to 30 μm in thickness.

Angle-dispersive x-ray diffraction was performed at beamline 13-ID-D of the Advanced Photon Source (APS), Argonne National Laboratory. X-rays with a wavelength of 0.3344 Å were directed through the diamond anvils and the diffracted signal was collected with a CCD detector (MarCCD). The detector position and orientation were calibrated using a CeO$_2$ standard. High temperature experiments were carried out by double-sided laser heating using two diode-pumped single-mode ytterbium fiber lasers ($\lambda = 1064$ μm), each with output power up to 100W. Beam-shaping optics were used to produce a flat-topped laser profile with a spot size of ~24 μm.

Sample temperatures were measured from both sides by spectroradiometry. Details of the x-ray diffraction and laser heating systems at 13-ID-D are reported elsewhere [21]. X-ray diffraction patterns were typically collected for 10–15 s. The resulting 2D CCD images were integrated to produce 1D diffraction patterns using the program FIT2D [22]. Peak positions were determined by fitting background-subtracted Voigt line shapes to the data. Lattice parameters were refined using the program UNITCELL [23] using at least six diffraction lines from each phase observed. The pressure was calculated using the (111) diffraction peak of gold and its thermal equation of state from [24].

Two separate experiments were performed. In the first, the sample was compressed at room temperature to 51 GPa. The sample was then laser heated at 1550–1700 K for 5–10 min. The sample was further compressed to 74 GPa in ~3 GPa steps and laser heated to 1400–1800 K for 5–10 min at each step. In the second experiment, the sample was compressed to ~30 GPa, and laser heated for 5 min to 1550 K. The synthesized sample was then compressed in 2–4 GPa steps up to 67 GPa with heating for 5 min at 1450–1550 K every 5 GPa.

Results/Discussion

Pressure-induced amorphization

Room-temperature diffraction patterns recorded up to 50.6 GPa consisted of diffraction peaks that could all be assigned either to Y$_3$Fe$_2$O$_{12}$ garnet, the NaCl insulator (B1 or B2 phase) or the gold pressure standard (figure 1). The diffraction peaks remained generally sharp but exhibited modest broadening with increasing pressure, likely as a result of increasing differential stress. Upon further increase of pressure from 50.6 to 51.1 GPa, the Y$_3$Fe$_2$O$_{12}$ garnet diffraction peaks completely disappeared (figure 1). This indicates that the sample undergoes an abrupt structural transition to a disordered or amorphous state over a narrow pressure range, consistent with previous work [3].

Pressure-induced amorphization (PIA) has also been reported in other rare-earth garnets, including EGG, GGG and GSGG, at 85 GPa, 84(4) GPa, and 62(2) GPa, respectively [4–7]. EGG, GGG and GSGG all transform to a perovskite structure at high pressure-temperature conditions [4, 6, 7]. PIA is commonly observed in framework structures, such as the garnet structure, which can be envisioned as a framework of alternating corner-sharing tetrahedra and octahedra. In EGG, GGG and GSGG, the amorphization has been proposed to be related to instabilities in this corner-sharing network with the increase in pressure [4]. The amorphization pressure has been correlated with the crystal field strength (CFS) of the garnets [5], which has been found empirically to increase as a function of decreasing unit cell size [25]. It has also been proposed that amorphization in these materials is driven by low- or room-temperature kinetic hindrance of a crystalline phase transition [4]. For instance, in YIG, the local atomic structure in the amorphous state was found to be dominated by iron-oxygen FeO$_6$ complexes with disordered orientation of local axis [3]. Furthermore, all Fe$^{3+}$ ions in the amorphous YIG structure
were found to be octahedrally coordinated [3], which means that the Fe\(^{3+}\) from the garnet tetrahedral site must undergo a coordination change. If the kinetically hindered transition involves coordination changes, then the \(d\) orbitals and their CFS would play a key role in controlling the amount of energy required to undergo the transition, and would act as mediators of the amorphization pressure. In contrast to YIG, the amorphization occurs over a broader pressure range for EGG, GGG and GSGG, with pronounced peak broadening beginning at 75 GPa for EGG, 74(3) GPa for GGG and at 55.5(5) GPa for GSGG. That is, the amorphization occurs over a range of 7–10 GPa in these materials, in contrast to <1 GPa for YIG. The amorphization is irreversible in GGG and GSGG, as the amorphous phase is retained upon decompression to 1 bar [5], while the decompression behaviour of amorphous EGG has not been reported.

Pressure-induced amorphization has received considerable attention and has been reported in a wide range of materials [26–28]. This phenomenon occurs when pressure induces instabilities in the crystal lattice but there is insufficient energy to permit the formation of a more stable crystalline phase, resulting in the loss of long-range order [28]. Two different approaches to understanding this type of amorphization have been proposed, one thermodynamic and one mechanical. In the thermodynamic case, the amorphization phenomenon is similar to melting, but occurs below the crystalline-glass phase transition for the material. In the mechanical case, the structure becomes amorphous when its mechanical stability is violated. The mechanical stability can be tested by examining the Born stability criteria [28]. In the case of a cubic crystal, such as garnet, these can be described by relationships among the elastic constants:

\[
C_{11} + 2C_{12} > 0; \quad C_{44} > 0; \quad C_{11} - C_{12} > 0 \quad (1)
\]

The high-pressure elastic constants of YIG can be estimated using the ambient pressure values (\(C_{11} = 269\) GPa, \(C_{12} = 107.7\) GPa, \(C_{44} = 76.4\) GPa [29]), and the measured pressure derivatives of the elastic constants (\(dC_{11}/dP = 6.22\), \(dC_{12}/dP = 4.01\), \(dC_{44}/dP = 0.41\) [30]) through the following relationship [31]:

\[
C_{ij} = C_{ij}^0 + P \left(\frac{dC_{ij}}{dP} \right) \left(\frac{V}{V_0} \right)^{\frac{1}{2}} \quad (2)
\]

At 50 GPa, all the Born criteria remain satisfied and no elastic softening is observed for YIG and thus there is no evidence for a mechanical instability.

High P–T experiments

At 51 GPa the amorphous sample was heated to 1650 K for 5–10 min. New diffraction peaks quickly appeared after three minutes of heating. The new peaks can be indexed to an orthorhombic unit cell and the peak positions match the GdFeO\(_3\)-type perovskite phase (space group \(Pbnm\)) (figure 2). All other observed peaks can be identified as either NaCl or Au. No further changes in the diffraction pattern were observed after 30 min of heating at 1375–1775 K or upon quenching to

![Figure 1. Room-temperature x-ray diffraction patterns of YIG between 35.1 and 51.1 GPa. Calculated peak locations for YIG, Au, and NaCl (in B1 or B2 phase) are shown as ticks below each diffraction pattern. Selected \((hkl)\) values for YIG peaks are indicated.](image-url)
room temperature. The pressure measured upon quenching is reduced slightly to 49.2 GPa, likely as a result of relaxation of differential stress. The sample was then further compressed to 74 GPa in 2–3 GPa steps with annealing for 5–10 min to 1550–1650 K at every other step, and the perovskite diffraction peaks continued to be observed up to the highest pressure measured.

A second YIG sample was compressed to 30.7 GPa at room temperature followed by laser heating at 1550 K for 5 min. The YIG peaks disappeared rapidly after heating began, and a new set of diffraction lines appeared. These new peaks can also be indexed as orthorhombic perovskite (figure 3). This indicates that the perovskite phase is stabilized at high temperatures.
well below the room-temperature amorphization pressure, suggesting that the abrupt amorphization is not simply related to a solid–solid phase boundary. This sample was then further compressed to 64 GPa in 2–3 GPa steps, with annealing every 5 GPa to 1450–1550 K. Again, only peaks from orthorhombic perovskite could be observed over this range.

The orthorhombic ABO$_3$ perovskite structure consists of 8-fold coordinated A cations located within a framework of octahedrally coordinated B cations. In the case of YIG, two different garnet to perovskite synthesis pathways have been proposed, leading to differences in the A and B site occupancy. YIG could transform into a single-phase perovskite of composition (Y$_{0.75}$Fe$_{0.25}$)FeO$_3$, where Y$^{3+}$ and Fe$^{3+}$ share the A site in 3 : 1 stoichiometry and Fe$^{3+}$ occupies the B site [18]. Alternatively, YIG could undergo disproportionation into Fe$_2$O$_3$ and YFeO$_3$-perovskite, where Y$^{3+}$ alone occupies the A site and Fe$^{3+}$ occupies the B site [17]. At room pressure, Fe$^{3+}$ in 8-fold coordination is expected to have a radius 20% smaller than that of Y$^{3+}$ [32], so the inclusion of Fe$^{3+}$ into the A site would lead to a small reduction in the unit cell volume in (Y$_{0.75}$Fe$_{0.25}$)FeO$_3$ versus YFeO$_3$, but the diffraction peak positions of YFeO$_3$ and (Y$_{0.75}$Fe$_{0.25}$)FeO$_3$ would be expected to be similar.

In the case of disproportionation, however, additional peaks associated with Fe$_2$O$_3$ would also be present. While there are conflicting reports on the high-pressure phase transition in Fe$_2$O$_3$ at room temperature [33–36], previous high-temperatures studies consistently find a phase transition from hematite to an Rh$_2$O$_3$(II)-type structure (orthorhombic, Pmcm) at pressures of above ~25 GPa [33–38]. The Rh$_2$O$_3$(II)-type structure contains only one crystallographically distinct cation site and has an x-ray diffraction pattern that is indistinguishable from the orthorhombic Pmcm perovskite structure. We do not observe evidence of either the hematite or Rh$_2$O$_3$(II)-type structures of Fe$_2$O$_3$ in our diffraction pattern at 28.2 GPa (figure 3). The expected unit cell parameters for the Fe$_2$O$_3$ high-pressure phase at 27 GPa and 300 K are approximately $a = 4.918$ Å, $b = 5.071$ Å, and $c = 7.187$ Å [38]. These are not consistent with the orthorhombic unit cell parameters we measured at 28.2 GPa: $a = 5.017(3)$ Å, $b = 5.333(2)$ Å, $c = 7.288(2)$. The intense (112) peak ($I_{IIa} = 100$) of the Rh$_2$O$_3$(II)-type structure, expected to be at $2\theta = 7.61^\circ$, is not observed, nor is there evidence for other low-angle peaks of this structure. Since all observed peaks can be accounted for by a single perovskite-type phase, Au, or NaCl, we conclude that our diffraction patterns are consistent with formation of a single-phase yttrium iron perovskite (YIP) with stoichiometry (Y$_{0.75}$Fe$_{0.25}$)FeO$_3$. No additional peaks indicative of ordering of Y$^{3+}$ and Fe$^{3+}$ along the A site are present, and thus we conclude the YIP is an A-site disordered perovskite. At higher pressure and temperature conditions ($P > 50$ GPa, $T \sim 2000$ K), Fe$_2$O$_3$ is reported to adopt a CaIrO$_3$-type post-perovskite structure (orthorhombic, Cmcm) [36, 37, 39], although one study reports an alternative orthorhombic high-pressure phase for Fe$_2$O$_3$ above 44 GPa [38]. Again, peaks indicating the presence of the post-perovskite phase, particularly the highest intensity (022) peak at $2\theta = 7.48^\circ$, or those of the alternative orthorhombic high-pressure phase [38] were not observed in our sample, indicating that the sample remains a single-phase perovskite throughout the pressure and temperature range examined in this study (figure 3). Representative diffraction patterns across our pressure range are shown in figure 4, and comparisons of the measured and calculated d spacings of YIP at these pressures are recorded in table 1. The garnet to perovskite phase transition is accompanied by a ~8% decrease in volume, ΔV, which is consistent with the ~6–10% ΔV
observed in the garnet-perovskite transition in EGG, GSGG, and GGG [4, 6, 7].

Equation of state and spin transition

The unit cell volume of Y₃Fe₅O₁₂ garnet was measured up to 51.1 GPa and the results are consistent with those reported by [2] (figure 5(a)). Fitting a third-order Birch–Murnaghan equation of state to the P–V data results in an isothermal bulk modulus, \(K_{T_0} \), of 204(5) GPa with pressure derivative \(K'_{T_0} = 3.1(3) \). \(V_0 \) was fixed at to our refined value of 1894.61(1) Å³. When \(K'_{T_0} \) is held fixed at 4, a bulk modulus of 189(1) GPa is obtained. These values differ from those reported by ultrasonic elasticity measurements which report

<table>
<thead>
<tr>
<th>Pressure (GPa)</th>
<th>(h)</th>
<th>(k)</th>
<th>(l)</th>
<th>(d_{obs}) (Å)</th>
<th>(d_{calc}) (Å)</th>
<th>(\Delta d) (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.2 GPa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.26749</td>
<td>3.26593</td>
<td>0.00156</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.66608</td>
<td>2.66542</td>
<td>0.00066</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.58085</td>
<td>2.58120</td>
<td>-0.00035</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2.02239</td>
<td>2.02448</td>
<td>-0.00209</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1.82557</td>
<td>1.82606</td>
<td>-0.00049</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1.82557</td>
<td>1.82430</td>
<td>0.00127</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1.79626</td>
<td>1.79671</td>
<td>-0.00045</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.77223</td>
<td>1.77144</td>
<td>0.00079</td>
</tr>
<tr>
<td>47.9 GPa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.16459</td>
<td>3.16224</td>
<td>0.00235</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.59713</td>
<td>2.59541</td>
<td>0.00172</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.49954</td>
<td>2.49667</td>
<td>0.00287</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1.95611</td>
<td>1.9569</td>
<td>-0.00079</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1.76840</td>
<td>1.7693</td>
<td>-0.00090</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1.76200</td>
<td>1.76155</td>
<td>0.00045</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1.74035</td>
<td>1.7415</td>
<td>-0.00115</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.71627</td>
<td>1.71603</td>
<td>0.00024</td>
</tr>
<tr>
<td>64.8 GPa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.09485</td>
<td>3.09531</td>
<td>-0.00046</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.52836</td>
<td>2.52989</td>
<td>-0.00153</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.44564</td>
<td>2.44376</td>
<td>0.00188</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1.91510</td>
<td>1.91539</td>
<td>-0.00029</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1.73129</td>
<td>1.73189</td>
<td>-0.00060</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1.72335</td>
<td>1.72413</td>
<td>-0.00078</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1.70239</td>
<td>1.70136</td>
<td>0.00103</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.68012</td>
<td>1.67973</td>
<td>0.00039</td>
</tr>
</tbody>
</table>
values for the adiabatic bulk modulus, K_0, of 159–163 GPa [29, 40–43]. This difference is likely the result of differential stress during room-temperature compression in a NaCl medium which is known to yield an overestimate of the bulk modulus in the axial diamond cell geometry [44].

Room-temperature equation of state data were obtained for YIP from 28.2–74.0 GPa (table 2). Representative diffraction patterns over this range are shown in figures 2–4. The measured unit cell volumes and individual lattice parameters of YIP are shown as a function of pressure in figure 5. Remarkably, we observe a large (6.8%) reduction in volume between 46 and 50 GPa without the appearance of any new peaks or other transitions. This is broadly consistent with static compression experiments that there is a large decrease in compressibility across the spin transition of the garnet phase (based on ultrasonic elasticity data) but that there is a large decrease in compressibility across the spin transition. This is broadly consistent with static compression results for other rare earth ferric iron perovskites which may exhibit as much as a 30–40% increase in bulk modulus across the spin transition (table 3).

In $(Y_{0.75}Fe_{0.25})FeO_3$, iron occupies 100% of the B sites as well as a 25% of the A sites. Thus, a spin transition could occur in either or both sites. While additional studies such as Mössbauer spectroscopy are necessary to address this question, insight can be obtained from consideration of the high-pressure spin transition in Fe-bearing silicate perovskites. In the case of (Mg, Fe)(Al, Si, Fe)O$_3$, the behaviour of Fe cations depends on site occupancy and valence [45, 60–62]. For ferric iron, both theoretical calculations and experiments indicate that Fe$^{3+}$ in the A site remains in the high spin phase (based on ultrasonic elasticity data) but that there is a large decrease in compressibility across the spin transition. This is broadly consistent with static compression results for other rare earth ferric iron perovskites which may exhibit as much as a 30–40% increase in bulk modulus across the spin transition (table 3).

In $(Y_{0.75}Fe_{0.25})FeO_3$, iron occupies 100% of the B sites as well as a 25% of the A sites. Thus, a spin transition could occur in either or both sites. While additional studies such as Mössbauer spectroscopy are necessary to address this question, insight can be obtained from consideration of the high-pressure spin transition in Fe-bearing silicate perovskites. In the case of (Mg, Fe)(Al, Si, Fe)O$_3$, the behaviour of Fe cations depends on site occupancy and valence [45, 60–62]. For ferric iron, both theoretical calculations and experiments indicate that Fe$^{3+}$ in the A site remains in the high spin phase (based on ultrasonic elasticity data) but that there is a large decrease in compressibility across the spin transition. This is broadly consistent with static compression results for other rare earth ferric iron perovskites which may exhibit as much as a 30–40% increase in bulk modulus across the spin transition (table 3).

In $(Y_{0.75}Fe_{0.25})FeO_3$, iron occupies 100% of the B sites as well as a 25% of the A sites. Thus, a spin transition could occur in either or both sites. While additional studies such as Mössbauer spectroscopy are necessary to address this question, insight can be obtained from consideration of the high-pressure spin transition in Fe-bearing silicate perovskites. In the case of (Mg, Fe)(Al, Si, Fe)O$_3$, the behaviour of Fe cations depends on site occupancy and valence [45, 60–62]. For ferric iron, both theoretical calculations and experiments indicate that Fe$^{3+}$ in the A site remains in the high spin phase (based on ultrasonic elasticity data) but that there is a large decrease in compressibility across the spin transition. This is broadly consistent with static compression results for other rare earth ferric iron perovskites which may exhibit as much as a 30–40% increase in bulk modulus across the spin transition (table 3).

In $(Y_{0.75}Fe_{0.25})FeO_3$, iron occupies 100% of the B sites as well as a 25% of the A sites. Thus, a spin transition could occur in either or both sites. While additional studies such as Mössbauer spectroscopy are necessary to address this question, insight can be obtained from consideration of the high-pressure spin transition in Fe-bearing silicate perovskites. In the case of (Mg, Fe)(Al, Si, Fe)O$_3$, the behaviour of Fe cations depends on site occupancy and valence [45, 60–62]. For ferric iron, both theoretical calculations and experiments indicate that Fe$^{3+}$ in the A site remains in the high spin phase (based on ultrasonic elasticity data) but that there is a large decrease in compressibility across the spin transition. This is broadly consistent with static compression results for other rare earth ferric iron perovskites which may exhibit as much as a 30–40% increase in bulk modulus across the spin transition (table 3).
dowsizing of the whole crystal structure without any symmetry change. The pressure-actuated close-packing arrangement should also take into account the orientation and occupancy of the valence electron orbitals at the relevant crystal structure sites. Thus pressure is a powerful tool for the controlled alteration of the physical and chemical properties of materials. Be it subtle, gradual, or abrupt (phase-transitional), pressure variation affects the short- as well as the long-range behaviour of atoms or ions constituting or embedded in the structure under investigation. The high-pressure high-to-low-spin phase transition of YIP described above is a manifestation of the application of quantum mechanical principles, or, more accurately, of the pressure-mediated breach of these principles, in the macroscopic scale.

Conclusion

Static compression experiments were performed in the laser-heated diamond anvil cell on yttrium iron garnet (Y₃Fe₅O₁₂, YIG) to a maximum pressure of 74 GPa and temperature of ~1800 K. At room temperature, we confirmed the sudden onset of amorphization in YIG near 51 GPa. Upon laser heating of either the garnet structure at 28 GPa or pressure-amorphized material at 51 GPa, Y₃Fe₅O₁₂ transforms into an orthorhombic perovskite structure (GdFeO₃-type). Due to the absence of diffraction peaks that would indicate the presence of iron oxide (Fe₂O₃), the composition of the synthesized perovskite (YIP) was inferred to be (Y₀.₇₅Fe₀.₂₅)FeO₃, in agreement with other low-pressure studies [18, 19].

The ionic radius of the A³⁺ ion is from [32]. In the case of YIP, the value has been calculated based on the radii of Y³⁺ (1.019 Å) and (high spin) Fe³⁺ (0.78 Å).

\[\Delta V : \text{change in volume across the transition.} \]

\[\Delta P : \text{pressure range of high spin to low spin transition.} \]

\[\Delta V : \text{change in volume across the transition.} \]

Table 3. Comparison of properties for rare earth orthoferrite perovskites (AFeO₃).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Composition</th>
<th>High spin</th>
<th>Low spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>(Y₀.₇₅Fe₀.₂₅)FeO₃</td>
<td>223(1)</td>
<td>161(9)</td>
</tr>
<tr>
<td>Rozenberg et al [48]</td>
<td>LuFeO₃</td>
<td>218(4)</td>
<td>241(5)</td>
</tr>
<tr>
<td></td>
<td>EuFeO₃</td>
<td>230.7(2)</td>
<td>241(2.5)</td>
</tr>
<tr>
<td></td>
<td>PrFeO₃</td>
<td>239.3(3)</td>
<td>274(5)</td>
</tr>
<tr>
<td>Xu et al [49]</td>
<td>PrFeO₃</td>
<td>35–50</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>LaFeO₃</td>
<td>35–50</td>
<td>3.0</td>
</tr>
<tr>
<td>Gavriliuk et al [58]</td>
<td>NdFeO₃</td>
<td>244(4)</td>
<td>239(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Composition</th>
<th>V₀ (Å³)</th>
<th>K₉₀ (GPa)</th>
<th>V₀ (Å³)</th>
<th>K₉₀ (GPa)</th>
<th>ΔP (GPa)</th>
<th>ΔV (%)</th>
<th>A⁺ cation radius (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>(Y₀.₇₅Fe₀.₂₅)FeO₃</td>
<td>223(1)</td>
<td>161(9)</td>
<td>197(1)</td>
<td>272(11)</td>
<td>46–50</td>
<td>6.8</td>
<td>0.959</td>
</tr>
<tr>
<td>Rozenberg et al [48]</td>
<td>LuFeO₃</td>
<td>2184(4)</td>
<td>241(5)</td>
<td>199.4(9)</td>
<td>313(10)</td>
<td>47–58</td>
<td>6.5</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td>EuFeO₃</td>
<td>2307(2)</td>
<td>241(2.5)</td>
<td>214.4(6)</td>
<td>339(7)</td>
<td>46–51</td>
<td>4.7</td>
<td>1.066</td>
</tr>
<tr>
<td></td>
<td>PrFeO₃</td>
<td>2393(3)</td>
<td>274(5)</td>
<td>218.6(1.2)</td>
<td>312(7)</td>
<td>33–58</td>
<td>4.0</td>
<td>1.126</td>
</tr>
<tr>
<td>Xu et al [49]</td>
<td>PrFeO₃</td>
<td>35–50</td>
<td>2.8</td>
<td>1.126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LaFeO₃</td>
<td>35–50</td>
<td>3.0</td>
<td>1.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavriliuk et al [58]</td>
<td>NdFeO₃</td>
<td>244(4)</td>
<td>239(4)</td>
<td>35–42</td>
<td>4.0</td>
<td>1.109</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A⁺ cation radius is from [32].

K₉₀: isothermal bulk modulus.

ΔP: pressure range of high spin to low spin transition.

ΔV: change in volume across the transition.

Figure 6. Percentage volume discontinuity in rare earth perovskites across the spin transition as a function of A cation radius. Ionic radii are taken from [32]. Measured volume discontinuities are from this work and [47, 58, 59]. For YIP, the mean ionic radius is determined from the proportions of Y³⁺ and Fe³⁺ in the A site, i.e. in 3 : 1 stoichiometry. The solid line shows the linear fit to the data.

Contrast, the octahedral coordination of the Fe³⁺ ions occupying the B-sites leads to a 3D representation of the corresponding orbitals. These orbitals direct themselves away from the 6 O²⁻ ions linked to each B-site Fe³⁺ ion. This orientation favors the pressure-dependent shortening the Fe–O bonds in the FeO₆ octahedra [47]. Thus, by analogy with silicate perovskite, we expect the spin transition is occurring in the B site while the fraction of Fe³⁺ in the A site likely remains high spin. This is supported by the magnitude of the volume change of the transition which is consistent with the trend in other rare earth perovskites with Fe³⁺ confined only to the B site (figure 6).

This pressure-instigated breakdown of Hund’s rule of maximum spin forces energetically lower orbitals to become occupied by a pair of electrons of opposite spin, leading to a
References

[8] Wei Q, Dubrovinskaia N and Dubrovinsky L 2011 Ruby and Sm:YAG fluorescence pressure gauges up to 120 GPa and 700 K J. Appl. Phys. 110 044313
[23] Holland T J B and Reddfern S A T 1997 Unit cell refinement from powder diffraction data; the use of regression diagnostics Mineral. Mag. 65 65–77
Novel high pressure monoclinic Fe$_2$O$_3$ polymorph revealed by single-crystal synchrotron x-ray diffraction studies. High Press. Res. 33 534–45

[38] Ito E et al 2009 Determination of high-pressure phase equilibria of Fe$_2$O$_3$ using the Kawai-type apparatus equipped with sintered diamond anvils. Am. Mineral. 94 205–9

[42] Sharma P U and Modi K B 2010 Effect of Fe$^{3+}$ substitution on elastic properties of yttrium iron garnet Phys. Scr. 81 015601

[47] Lin J-F, Speziale S, Mao Z and Marquardt H 2013 Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry Rev. Geophys. 51 244–75

[56] Lyubutin I S and Gavriliuk A G 2009 Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the art Phys.-Usp. 52 989–1017

