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The recent discovery of thousands of planets outside our 
Solar System raises fundamental questions about the variety 
of planetary types and their corresponding interior structures 
and dynamics. To better understand these objects, there is a 
strong need to constrain material properties at the extreme 
pressures found within planetary interiors1,2. Here we used 
high-powered lasers at the National Ignition Facility to ramp 
compress iron over nanosecond timescales to 1.4 TPa (14 
million atmospheres)—a pressure four times higher than for 
previous static compression data. A Lagrangian sound-speed 
analysis was used to determine pressure, density and sound 
speed along a continuous isentropic compression path. Our 
peak pressures are comparable to those predicted at the 
centre of a terrestrial-type exoplanet of three to four Earth 
masses3, representing the first absolute equation of state 
measurements for iron at such conditions. These results 
provide an experiment-based mass–radius relationship for 
a hypothetical pure iron planet that can be used to evaluate 
plausible compositional space for large, rocky exoplanets.

Of the thousands of exoplanets discovered so far, those that are 
1–4 times the radius of the Earth are the most abundant4. Based 
on mass and radius determinations, a number of these planets are 
inferred to have compositions comparable to terrestrial planets 
within our Solar System5,6, and are referred to here as super-Earths. 
As core pressures for even a 5 Earth-mass planet can reach as high 
as 2 TPa3, a fundamental requirement for constraining exoplanetary 
composition and interior structure is an accurate determination of 
the equation of state (EOS) of planetary materials at TPa pressures. 
Iron is a cosmochemically abundant element that plays a major part 
in terrestrial planetary interiors as the dominant core constituent. 
The ultrahigh pressure properties of iron are of importance for 
interpreting observational data for large rocky extrasolar planets. 
Aside from a planet’s mass–radius relationship2, the properties of 
iron can influence the planet in other important ways. The size of 
the iron core may affect the production of partial melt (owing to 
the steepness of the internal pressure gradient), which in turn influ-
ences atmospheric formation and evolution7. Planetary magnetic 
fields arising from Fe-rich cores have an important role in the atmo-
spheric evolution and surface environment of planets8. The relative 
size of core and mantle may affect the ability of the planet to initiate 
plate tectonics. Also, a well constrained Fe EOS is needed for models 
that describe the removal of mantles through giant impact events9.

Despite its importance, the behaviour of iron at pressures most 
relevant for super-Earth cores remains highly uncertain because 

of the difficulty of experimental study above 0.3 TPa using con-
ventional tools such as the diamond anvil cell10. Shock compres-
sion experiments can reach higher pressures but, owing to large 
increases in entropy with pressure, shock temperatures are too high 
to constrain exoplanet interior conditions. Theoretical approaches 
for calculating the properties of Fe at TPa pressures are also poorly 
constrained. First-principles calculations of isothermal cold com-
pression in Fe at high pressures exhibit a large degree of uncertainty 
owing to the choice of density functionals and the difficulty in mod-
elling the effects of magnetism11. A recent theoretical calculation 
has explored the phase diagram of Fe up to ultrahigh pressures12. 
This study indicates that the hexagonal close-packed (HCP) phase 
of iron is expected to be stable to 6 TPa and also places constraints 
on the 0 K iron EOS to ultrahigh pressures12. Here, we present 
ramp compression data of Fe to a pressure of 1.4 TPa (equivalent 
to 14 million atmospheres of pressure) and 2.6 times compression. 
Ramp compression produces a near-isentropic loading path, which 
ensures that Fe stays within the solid state up to very high pres-
sures13,14. Exoplanet interior models demonstrate the importance 
of accurate EOS information for key planetary components2. Our 
work provides direct experimental constraints on the pressure, 
density, sound speed and Grüneisen parameter of Fe at conditions 
found deep within super-Earth interiors.

Experiments were conducted at the National Ignition Facility 
(NIF) located at the Lawrence Livermore National Laboratory. NIF 
can deliver up to 2 MJ of laser energy over 30 ns and provides the 
necessary laser power and control to ramp compress materials to 
TPa pressures15. The target design to ramp compress Fe to 1.4 TPa 
consisted of a ~40-μ​m-thick Cu foil glued to a stepped Fe sample 
with four thicknesses—85, 95, 105 and 115 μ​m (Supplementary  
Fig. 1a). The energy from 176 laser beams was converted into 
an X-ray drive, which, through direct ablation of the Cu layer, 
imparted a monotonically increasing ramp pressure wave into the 
Cu/Fe sample. Ramp compression waves are unstable and, in com-
pressible materials, steepen with propagation distance owing to the 
increase of sound speed with pressure. Precise shaping of the laser 
pulse was used to tailor the temporal profile of the ramp compres-
sion wave and avoid the formation of a strong shock and the associ-
ated rapid heating that could melt the sample. Once the pressure 
wave reached the Fe free surface, the sample accelerated. A Doppler 
velocity interferometer was used to measure the time history of the 
Fe free-surface velocity, ufs, for each of the four Fe thicknesses (Fig. 1  
and Methods). Fe undergoes a body-centred cubic (BCC) to HCP 
phase transformation with an associated 5% volume collapse at 
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13 GPa16. To avoid complexities associated with this transition, the 
sample was initially shocked to 60 GPa (0.06 TPa), directly into the 
HCP phase, before ramp compression to TPa pressures.

A Lagrangian analysis was used to transform the measured ufs(t) 
velocity data into a continuous stress–density (Px–ρ) and Lagrangian 
sound speed CL(u) path, where u is the particle velocity15. In all, 
three shots gave independent CL(u) and Px–ρ data. CL(u) data for 
these shots are shown as an inset in Fig. 1. CL and its uncertainty 
were obtained from thickness and velocity-versus-time data by lin-
ear regression using errors determined by our measurement accu-
racies. The uncertainty was propagated by calculating the weighted 
mean of all three shots, as shown by the blue curve in the inset of 
Fig. 1 (see Methods). Owing to a uniaxial compression geometry in 
our experiments, we measured longitudinal stress, Px. To transform 
the measured Px–ρ path to an isentropic pressure–density (P–ρ) 
path, it was necessary to correct for (1) the thermal pressure of the 
initial shock, (2) work heating due to the high-pressure strength of 
Fe and (3) the deviatoric stress offset associated with relating the 
measured longitudinal stress to an equivalent hydrostatic pressure. 
For (2) and (3), we used a high-pressure strength model for Fe (see 
Methods and Supplementary Figs. 2 and 3). These three corrections, 
as a function of pressure, are shown in the inset of Fig. 2 and consti-
tute around −​2.8% pressure offset at 1.4 TPa. The NIF data reduced 
to an isentrope is plotted as the bold blue curve in Fig. 2 (see also 
Supplementary Table 1a). Also plotted are static compression data10 
and extrapolations of static data (orange shaded region) using  

semi-empirical EOSs (see also Supplementary Fig. 5a). First-
principles calculations describing the high-pressure isothermal cold 
compression of Fe are represented as the light blue shaded region (see 
Supplementary Fig. 5b). Also plotted are Px–ρ points determined 
from extended X-ray absorption fine structure measurements on 
shock and multi-shock compressed Fe17, shock Hugoniot18 and pre-
vious low-pressure ramp compression data19. In our experiments, Fe 
was compressed to 20 g cm–3—a 2.5-fold increase over its ambient 
density. The peak pressure reached the equivalent of that expected 
at the centre of a 3.5–4.0 Earth-mass terrestrial-type planet3. At this 
density, the extrapolation from static compression experiments 
using semi-empirical EOSs results in a large pressure uncertainty 
of ±​240 GPa, compared with ±​26 GPa for our data. Thus, our work 
provides a dramatic improvement in experimental constraints on 
the iron EOS at these extreme conditions. A Vinet fit20 was used 
to describe the isentrope (bold blue curve in Fig. 2). The fitting 
form was P(X) =​ 3K0X−2(1 −​ X) exp((1.5 ′K0 −​ 1.5)(1 −​ X)), where  
X =​ (ρϵ,0/ρ)1/3, ρϵ,0 is the density at P =​ 0 for the Fe ϵ​-phase 
(8.43 g cm–3),21 and the best-fit parameters are K0 =​ 177.7(6) GPa 
and ′K0 =​ 5.64(1). We note that an extrapolation of our P–ρ fit is in 
good agreement with values (6 TPa and 33.9 g cm−3) predicted theo-
retically at the predicted limit of 0 K stability of the HCP phase12. 
This agreement between theory and experimental results provides 
enhanced confidence in the validity of the current understanding of 
the EOS of iron for exoplanet modelling.
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Fig. 1 | Free-surface velocity measurements from a dynamically 
compressed multi-thickness Fe sample. Doppler interferometry  
was used to measure free-surface velocity as a function of time, ufs(t), 
for an Fe sample with four thicknesses: 83.14 μ​m (red), 96.45 μ​m (blue), 
106.28 μ​m (black) and 115.73 μ​m (green). The corresponding bulk sample 
pressure is plotted on the right-hand axis. The Fe sample was initially 
shocked to 60 GPa (0.06 TPa) before ramp compression to 1.4 TPa. Inset: 
Lagrangian sound velocity CL versus particle velocity u was calculated from 
velocity versus sample thickness data. Three experiments, each with two 
independent velocity measurements (green, light blue and light orange 
lines) yielded CL data and their average (dark blue line), which were used to 
determine isentropic P–ρ (see dark blue curve in Fig. 2). Error bars: 1σ.  
Also shown are the ambient-pressure longitudinal and bulk sound speeds 
of BCC Fe (yellow and cyan circles)19 and a low-pressure CL(u) model used 
in the Lagrangian analysis (see Methods).

1.6

1.4

1.2

0.4

0

–2.0

–4.0

–6.0

–8.0

0.8

Pressure (TPa)

P
er

ce
nt

ag
e 

pr
es

su
re

co
rr

ec
tio

n

H
ug

on
io

t f
it

30
0 

K 
iso

th
er

m
 e

xt
ra

po
la

tio
ns

Cold
 cu

rve
 m

od
els

1.2

Total
Deviatoric stress offset
60 GPa shock heating
Work heating from strength

P
re

ss
ur

e 
(T

P
a) 1.0

3.5–4.0 ME

Earth

0.8

0.6

0.4

0.2

0

8 10 12 14

Density (g cm–3)

16 18

NIF data

Static
Hugoniot

Double shock

Ramp
compression

20

Fig. 2 | Isentropic P–ρ path of Fe to 3.7 Earth-mass planet core conditions. 
Weighted average of pressure versus density with experimental 
uncertainties (bold blue curve). Error bars: 1σ. Hugoniot data are shown 
as grey triangles18 and squares17. Double-shock data are shown as red 
squares17. A fit to the Hugoniot data (grey dashed–dotted line) with 
uncertainties (grey shaded region) is described in Supplementary Fig. 4. 
Also plotted are previous ramp compression data19 (purple curve) and 
static diamond anvil cell data (light blue circles)10. The ranges of EOS 
extrapolations of low-pressure static data (orange shaded region) and first-
principles cold curve calculations (light blue shaded region) represent the 
uncertainty in the EOS of Fe at TPa pressures (see Supplementary Fig. 5  
for a data review). Central pressures for Earth and a 3.5–4.0 Earth-mass 
(ME) planet are shown for reference. Inset: the total percentage pressure 
correction to measured data (black curve) is the sum of corrections for 
thermal pressure from initial 60 GPa shock (blue dotted line), deviatoric 
stress offset (red dashed line) and work heating associated with high-
pressure Fe strength (green dashed–dotted line) (see Methods for details).
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obtained from our data is plotted as a function of density as the blue 
curve in Fig. 3. Here, S denotes isentropic compression and ρ0 is 
the density of Fe at 1 bar. Our sound speed data indicate that Birch’s 
law (a linear dependence of sound speed on density22) holds for Fe 
to TPa pressures. The inset in Fig. 3a shows the pressure–tempera-
ture (P–T) phase diagram for Fe with solid–solid phase boundar-
ies, the melting curve19, the calculated geotherm for a 5 Earth-mass 
planet1 and the calculated Hugoniot path23. The dashed blue curve 
is the calculated isentropic P–T path from an initial 60 GPa shock 
state and represents the coolest possible compression path in our 
experiments. Radiation hydrodynamic simulations that calculate 
direct X-ray heating and thermal conduction from the ablation sur-
face confirm that the Fe sample remains close to room temperature 
before the onset of dynamic compression. Upon compression, the 
major contribution to sample temperature is due to a combination 
of heating from the initial 60 GPa shock and plastic work heating 
due to the high-pressure strength of Fe17. The solid blue region is the 
estimated range of temperatures associated with work heating from 
the strength models described in the Methods and Supplementary 
Fig. 2b,c. Here, the upper temperature limit is calculated with the 
strength model used in the P–ρ analysis in Fig. 2, and the lower 
temperature limit represents the heating that results if we consider a 
strength model based on extrapolated static data. EOS models show 
that variations in temperature over the range plotted in Fig. 3a have 
a negligible effect on the estimated pressure and density at several 
TPa (see Methods and Supplementary Fig. 7).

Comparison between the measured isentrope and a fit to the 
Hugoniot data (Fig. 2) allows us to provide an experimental con-
straint of the Grüneisen parameter, γ, for Fe at TPa pressures (Fig. 3b)  
(see Methods for details). γ is a fundamental thermodynamic quan-
tity with wide applications23–25. In planetary cores, it affects the 
adiabatic temperature gradient and the amount of heat conducted 
along the adiabat. Relative to Earth, the low values of γ at super-
Earth core pressures may result in a lower adiabatic gradient and 
less heat conducted from the core into the mantle. Knowledge of γ 
allows us to calculate the bulk sound speed along the Hugoniot, CE

H,  
which is in good agreement with previous shock melt data (Fig. 3a 
and Methods).

Interpretation of the composition and structure of exoplanets 
is often achieved through comparison of observational measure-
ments of mass and radius with calculated mass–radius curves of 
the expected constituent materials2,26–28. However, these interpre-
tations rely on the accuracy of the EOS models used. Following 
the analysis of ref. 2, the P–ρ isentrope in Fig. 2 was used to calcu-
late the mass–radius relationship for a homogeneous iron planet, 
shown as the bold blue curve in Fig. 4 along with mass–radius 
relationships for theoretical homogeneous planets comprised of 
H2O and MgO. Extrapolation of the NIF data assumes the Birch's 
law fit established in Fig. 3a (faint blue curve). The grey circles 
represent selected measurements of transiting super-Earth planets 
with their reported uncertainties29. The orange and blue shaded 
regions represent the range of extrapolations from low-pres-
sure 300 K isotherm measurements of Fe and the range of first-
principles isothermal cold curve calculations, respectively (see 
Supplementary Fig. 5). Earlier studies have suggested that there 
may be some enigmatic planets with densities greater than that 
of a pure iron planet30. In the size range up to 10 Earth masses we 
do not find any evidence to confirm the existence of such plan-
ets, although this cannot be completely ruled out for a few plan-
ets with large mass uncertainties (Fig. 4). Pure iron planets are 
considered unlikely, based on considerations of physical processes 
during planetary formation and evolution31. Representative pre-
viously reported mass–radius curves for an iron planet are also 
plotted2,26–28. These studies are usually based on extrapolations of 
low-pressure data and produce a wide range of mass–radius curves  

(Fig. 4 and Supplementary Fig. 6). Our study provides a firmer basis 
for establishing the properties of the end-member case of a pure 
iron planet. Furthermore, our study demonstrates the capability for  
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Fig. 3 | Sound velocity and Grüneisen parameter as a function of density 
for iron. a, Measured Eulerian bulk sound velocity, C S

E , along an isentropic 
compression path (bold blue curve) is consistent with a linear Birch's law 
dependency (grey long-dashed curve)22, where C S

E  (in km s–1) =​ −​2.2591 +​  
0.89941 ×​ ρ (in g cm–3). Error bars: 1σ. Pressure along the isentrope is shown 
on the top axis. Also plotted are the average longitudinal acoustic wave 
speeds (VP) from static59 (grey curve) and shock experiments (crossed 
squares23 and crossed circles52). VP data for the Earth’s inner (red) and 
outer (red dashed) core are also shown60. Bulk sound speed measurements 
from shock melt experiments, CE

H, are shown as open squares23, open 
circles52 and open diamonds61. The calculated bulk sound speed along 
the Hugoniot is shown as the grey short-dashed curve (see Methods). 
The ambient-pressure longitudinal and bulk sound speeds are labelled as 
yellow and cyan circles, respectively19. Inset: T–P plot for Fe with solid–solid 
phase boundaries, the calculated high-pressure melt line19 (grey lines), the 
calculated Hugoniot and the isentrope from an initial 60 GPa shock state. 
Also shown is the calculated geotherm for a 5 Earth-mass planet1. The 
range of possible temperatures for the NIF data is represented as a solid 
blue shaded region where the upper temperature limit was calculated with 
the strength model used for the P–ρ analysis in Fig. 2 (see Supplementary 
Fig. 2b). The lower temperature limit represents the heating that results 
if we consider a strength model based on extrapolated static data (see 
Supplementary Fig. 2c). See Methods for details. b, Grüneisen parameter 
(γ) as a function of density, calculated from comparison between the 
isentrope and Hugoniot curves in Fig. 2, is plotted against previous 
measured values under static (open62 and orange24 circles) and shock 
compression (open squares23) (see Methods). Error bars: 1σ. The dashed 
curve is the γ(ρ) dependency predicted in ref. 16.
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determination of EOSs and other key thermodynamic proper-
ties of planetary core materials at pressures well beyond those of 
conventional static techniques. Such information is crucial for 
advancing our understanding of the structure and dynamics of 
large rocky exoplanets and their evolution. Future experiments 
will extend the study of planetary materials to several TPa.

Methods
Target design. The target consists of an Au cylinder (or 'hohlraum') (11 mm in 
length and 6 mm in diameter with 25-μ​m-thick walls), two laser entrance holes 
(LEHs) at the ends (4.5 mm in diameter) and a Cu/Fe step sample affixed to the 
hohlraum wall over a 3-mm-diameter hole (inset to Supplementary Fig. 1a). 
Laser beams (n =​ 176) were focused though the LEHs and onto the inner walls of 
the hohlraum. Each beam had a shaped laser power history designed to generate 
an initial 60 GPa (0.06 TPa) shock within the Fe sample before subsequent ramp 
compression to TPa pressures (Fig. 1 and Supplementary Fig. 1a). The hohlraum 
was filled with 0.1 atmospheres of neopentane gas (C5H12), which restricted 
the flow of ablated Au towards the hohlraum axis and which would otherwise 
have reduced laser coupling and the peak achievable sample pressure. The gas 
was contained inside the hohlraum with 0.6-μ​m-thick polyimide layers, which 
covered the LEHs. X-rays generated by laser ablation of the hohlraum walls were 
emitted, reabsorbed and remitted in a process that resulted in a near blackbody 
distribution32. The X-rays were absorbed by and ablated the Cu foil portion of the 
target package in a process that imparted a time-varying and spatially uniform 
pressure wave into the Cu/Fe step target assembly. The target package consisted 
of a ~40-μ​m-thick Cu layer and a step target of iron with thicknesses in the 
83–116 μ​m range. The high-purity (99.995%) Fe steps were manufactured using a 
vapour-deposition and shadow-masking technique, which produced fully dense 
layers (7.875 g cm–3) to within 0.6%33. Pole figure measurements showed that the Fe 

BCC crystal structure was orientated with the [110] axis in the growth (pressure 
loading) direction with random orientation in-plane. Metrology of the sample 
surface showed that the roughness was <​0.1 μ​m, the thickness gradients were <​1% 
and step heights were accurate to within ~0.1 μ​m.

Velocity interferometry. A 660 nm Doppler interferometer known as a 'velocity 
interferometer system for any reflector' (VISAR) was used to measure the Fe 
free-surface velocity, ufs(t), for each sample thickness34. The VISAR system 
imaged across the Fe steps in one dimension with ~30 μ​m spatial resolution, and 
provided continuous velocity-versus-time data over a 1 mm field of view. Two 
VISAR channels with different velocity sensitivities were used simultaneously to 
resolve any velocity ambiguities that could arise if the rate of target velocity change 
exceeded the time response of the system. VISAR fringe movement was directly 
proportional to the velocity of the Fe free surface and was resolved in time with a 
streak camera (inset in Supplementary Fig. 1b). The streak camera had ~200–300 
time elements across the sweep window, which equated to a ~40–150 ps delta-
function resolution for the time windows used in our experiments (~5 pixels on the 
sweep record). However, the time difference between temporal events on the same 
streak record and at spatially distinct locations (for example, the time separation 
between velocity profiles from different Fe steps) is known to a higher precision 
than the streak camera delta-function resolution. We estimated, from peak-fitting a 
sequence of light pulses with a known temporal separation, that the time difference 
between two distinct time events can be measured to one part in a thousand or 
~1–2 pixels on the streak record. We verified this with calculated multi-stepped 
ufs(t) data for a material with a known EOS. A one-dimensional Gaussian blur was 
applied along the time axis of a simulated VISAR interferogram to account for the 
finite streak camera delta-function time resolution. A Lagrangian analysis was then 
employed to the extracted ufs(t) data, and the input EOS was reproduced to within 
~0.5% in pressure at 1,000 GPa. This confirmed that the accuracy with which we 
can correlate ufs(t) for two different steps is better than the delta-function time 
resolution. In addition, when we cross-correlated the ufs(t) traces measured by the 
two independent VISAR systems used on each shot (with different temporal sweep 
windows and different etalons), the temporal separation between velocity profiles 
from different steps agreed to within a 1–2 pixel uncertainty.

Px–ρ and sound speed analysis. A Lagrangian analysis35–38 following the method 
of ref. 39 was used to translate the ufs(t) data (from all four Fe thicknesses) into 
Lagrangian sound speed (CL(u), where u is the particle velocity) and Px–ρ 
relations that quantified the loading path (Supplementary Fig. 3a). CL(u) data for 
three shots are shown in the inset to Fig. 1. Two VISAR channels were used for 
each shot and each channel was treated as an independent measurement. CL(u) 
and its uncertainty σCL

(u) were obtained from thickness and velocity-versus-
time data by linear regression using errors determined by our measurement 
accuracies (discussed below). The uncertainty was propagated by calculating 
the weighted mean average of all three shots, CL(u) =​ ∑ ∕ ∑
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shown by the blue curve in Fig. 1, where j is the shot number. The uncertainty in 
the average value was chosen from the maximum of the uncertainty in the mean 
and the weighted standard deviation. CL(u) and σCL
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density and particle velocity, respectively, associated with the initial 60 GPa shock 
Hugoniot state21. Uncertainties are propagated though the integrals linearly, rather 
than in quadrature, because they appear to be strongly correlated rather than 
random. This method of uncertainty propagation allows the direct propagation 
of experimental uncertainties. Sound speed analysis over the three steps (four 
thicknesses) showed simple wave behaviour, suggesting that the material response 
was not time-dependent within the experimental uncertainties. Release waves 
from the Fe–vacuum interface significantly perturbed the incoming ramp wave. 
Extensive tests using simulated data confirmed that the Lagrangian analysis 
accurately corrects for these wave interactions.

Lagrangian analysis assumes isentropic and reversible flow. However, for 
experiments with an initial shock, the thermodynamic compression path is not 
reversible. Regions of the Fe sample close to the free surface that experience 
shock compression follow an isentropic release path not constrained by 
these measurements. We modified the Lagrangian analysis over previous 
implementations15 to use an EOS model within this released region. We assume 
the release isentrope below 60 GPa is described correctly by Sesame EOS table 
2150 (ref. 21; see the 'model' curve in the inset of Fig. 1). Tests on simulated data 
showed that the determined high-pressure response of Fe is not sensitive to the 
low-pressure isentropic release model used.

In our experimental design, the 60 GPa shock wave compressed the sample 
into the high-pressure HCP phase before subsequent ramp compression to peak 
pressure. Hydrocode simulations showed that after this initial shock reached the 
Fe free-surface and, at times before the arrival of the ramp compression wave, a 
pressure release wave caused a ~3 μ​m thickness of Fe at the Fe–vacuum interface 
to decompress along a release isentrope and across lower-pressure ϵ →​ γ and γ →​ α 
phase boundaries. To determine whether the volume change associated with these 
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Fig. 4 | Mass–radius relationships for homogeneous-composition planets. 
Calculations for Fe (based on our data, where 1σ error bars are within the 
width of the line, bold blue). The thin blue line represents extrapolation 
of the NIF data using a linear Birch's law dependency of sound speed 
with density (grey long-dashed curve in Fig. 3). The range of Fe EOS 
models for M/ME =​ 10 is highlighted on the right-hand axis. The orange 
and blue regions represent the range of uncertainty in extrapolation from 
low-pressure static data using phenomenological EOS models and the 
spread of first-principles cold curve calculations (see Supplementary 
Fig. 5). Representative previously reported mass–radius curves for Fe are 
also plotted (grey curve26, grey dashed curve2, grey dotted curve27 and 
red dashed–dotted curve28). A more complete comparison with recent 
published mass–radius curves for Fe is shown in Supplementary Fig. 6. Also 
shown are the mass–radius curves for hypothetical MgO (dashed green) 
and H2O (dashed blue) planets2. The circles represent measurements of 
selected transiting super-Earths, with error bars as reported in ref. 29.  
ME and RE are the mass and radius of the Earth, respectively.
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low-pressure phase transformations affected the bulk Px–ρ determination, we 
used the hydrocode Hyades40 and Sesame EOS table 2150 for Fe to simulate shot 
N150701 (ref. 21). The Sesame EOS contains a full description of Fe equilibrium 
phase boundaries. Using simulated ufs(t) data from several thicknesses, we 
determined the Px–ρ response using the Lagrangian analysis method and compared 
it with Px–ρ values determined within the bulk from an internal tracer layer in the 
simulation. The difference in these values was ~0.5% in pressure at 1,000 GPa. We 
consider this an upper limit, as at high strain rates, phase transformations in Fe are 
kinetically inhibited16.

Error analysis. The measurement of sound speed is dominated by the following 
random uncertainties:
(1)	 Uncertainty in Fe step height (δxStepHeight). Individual Fe step-thickness meas-

urements were obtained through imaging white light interferometry tech-
niques, which provided height differences between measurements from the 
rear (flat portion) and front (stepped portion) of the sample. This produced a 
two-dimensional thickness map across the sample surface. The measurements 
for step height used in our study are characterized by the difference between 
average values of the statistical distribution of thickness measurements for 
each step, with 1σ uncertainties. For all targets, δxStepHeight values were deter-
mined to within an uncertainty of 0.04–0.17 μ​m. Systematic uncertainties in 
step-height measurement (~nm) were small as the white light interferometer 
was calibrated by gauge blocks of known thickness.

(2)	 Uncertainty in velocity determination (δu). The imaging-VISAR diagnos-
tic provides continuous ufs(x,t) data along a one-dimensional line at the 
target plane34. For each Fe step, the average free-surface velocity in time, 

= ∑ =u t u x t( ) ( , )xfs 0
StepWidth

fs , with random uncertainty δufs(t), is determined by 
calculating the average phase shift and standard deviation across the full step 
width. Random uncertainties in the measurement of ufs at any time on the 
trace can arise from (1) variations in the sample thickness resulting in com-
pression wave arrival at different times across the step width and (2) random 
frequency structure on VISAR fringes due to random intensity laser speckle, 
which can shift the central position of a fringe41. In our analysis, δu was 
determined by comparing the two independent VISAR channels for a single 
experiment. δufs was scaled until 1σ of the error bars overlapped between the 
two datasets. Using this approach, δufs =​ 20–44 m s–1 (0.9–3.5% of a fringe shift).

	(3)	 Uncertainty in time (δt). Random uncertainties in velocity result in random 
uncertainties in timing. In the original approach, δt was determined by 
comparing the two VISAR channels used in each experiment where the % 
velocity per fringe error was scaled until the 1σ error bars overlap. However, 
this appears to be an underestimate. Instead, in our analysis, δt was taken 
as equal to two time pixels in the velocity measurement and was therefore 
directly related to the VISAR streak camera sweep rate. Using this approach, 
δt =​ 20–66 ps.
For convenience, these random uncertainties were then treated as 

uncertainties in distance (δx) as follows,

δ δ δ
δ
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2
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where CL is the experimentally determined Lagrangian sound speed. All data and 
uncertainties were averaged in CL(u) space (Fig. 1 inset, bold blue curve). This 
average was then used to calculate the average Px–ρ curve (Supplementary Fig. 3a).

Reduction of the Px–ρ data to an isentropic P–ρ path. Owing to the uniaxial 
compression geometry in our experiments, we measured longitudinal stress, Px. 
To transform the measured Px–ρ path to an isentropic P–ρ path, it was necessary 
to correct for (1) the deviatoric stress offset associated with relating the measured 
longitudinal stress to an equivalent hydrostatic pressure, (2) the thermal pressure  
of the initial 60 GPa shock and (3) work heating due to the high-pressure  
strength of Fe.
	(1)	 Deviatoric stress offset. In the analysis of ref. 42 using the Lévy–von Mises 

yield criterion43, the measured longitudinal stress Px is related to a hydrostatic 
pressure by

= −P P Y P2
3

( ) (2)x

where Y is the yield strength. Y(P) is calculated from a high-pressure strength 
model for Fe (see below).
	(2)	 Thermal pressure offset from 60 GPa shock. Pressure along the Hugoniot, PH, 

is related to the pressure along the isentrope PS assuming the Mie–Grüneisen 
relation44,

γρ− = −P P E E( ) (3)H S H S

where γ is the Grüneisen parameter, and EH and ES are the internal energies along 
the Hugoniot and isentrope, respectively. γ is assumed to depend on volume only 

such that

γ γ
ρ
ρ

=










(4)
q

0
0

where γ0 =​ 2.33 and q =​ 1.36 for ϵ-Fe16 (grey dashed line in Fig. 3b). Following this 
analysis, and with an estimated shock temperature of 965 K21, to account for the 
thermal pressure associated with the initial 60 GPa shock, we applied a correction 
of −​3.55 GPa to our Px–ρ data.
	(3)	 Thermal pressure offset due to work heating. If a material supports strength 

at high pressure, work heating results in a thermal pressure offset from the 
isentrope. As the high-pressure strength of iron is not well constrained 
experimentally (Supplementary Fig. 2), to correct for this thermal pressure 
offset we must make bounding assumptions about strength as a function of 
pressure. Following the analysis of ref. 42, plastic work heating is given by

ρ
ε ρ= − ∕

ε

W Y Y Gd 1 2
3

[d d 2 ( )] (5)P x
,0

where G(ρ) is the shear modulus, Y is the yield strength, ρϵ,0 is the density at P =​ 0 
for the Fe ϵ-phase (8.43 g cm–3)21 and εx =​ ln (ρ/ρϵ,0). The calculated temperature 
rise due to work heating, as shown in the inset to Fig. 3a, was calculated by dividing 
equation (5) by the specific heat, CV. Following the analysis of ref. 23,

β
ρ
ρ

= +
γ









C D T( ) (6)V e
0

e

where D(T) is the Debye function. D(T) =​ 3R for T >​ θ, where R is the gas constant 
and θ is the Debye temperature. The relation is satisfied considering the 60 GPa 
shock temperature of 965 K, and θ for ϵ-Fe is estimated to be 322 K16. In equation 
(6), βe is proportional to the density of electrons at the Fermi level, and γe (the 
electronic Grüneisen parameter) describes the volume dependence for the density 
of states. Values for βe and γe were determined for Fe to be 90.8 J Mg−1 K−2 (refs 23,45) 
and 1.34 (ref. 23), respectively.

Plastic work heating causes the mean hydrostatic pressure to deviate from an 
isentrope by

∫γρ β− =
ε

P P Wd (7)Phyd s
0

x

where β is the Taylor–Quinney factor, which describes the fraction of plastic work 
that partitions into the thermal energy of the system46. Here, β =​ 1, which assumes 
all plastic work is used to heat the material47.

We extrapolate the shear modulus G(ρ) data for Fe from static compression 
(23–210 GPa) using the functional form described in ref. 48, and assume,

′=
′

Y
G
G

Y (8)P
P

0
0

where ′YP and ′GP are the derivatives with respect to pressure, respectively. Y0 is the 
yield strength and G0 is 83 GPa48. The relation in equation (8) is used within the 
Steinberg–Cochran–Guinan constitutive model developed to describe high-strain-
rate strength in metals49. To account for the pressure offset from an isentrope due to 
the high-pressure strength of Fe, we consider three cases for ′YP:
	(1)	 High-strength model. Based on low-pressure data within the Fe α-phase, we 

expect a strain-rate-dependent increase of Y0 (ref. 50). To account for this, we 
vary Y0 in equation (8) so that the calculated ′YP is consistent with the high 
strain-rate estimates of refs 17,51 (see Supplementary Fig. 2a). The datum of 
ref. 17 is not a direct measurement of strength and is described by the authors 
as an upper limit. Here, Y0 =​ Y0,Static ×​ 8.2, where Y0,Static =​ 1.45 GPa. Using 
this ′YP dependency, the calculated deviatoric stress offset (equation (2)) and 
thermal pressure due to work heating (equations (5) and (7)) are also plotted. 
The corrected P–ρ isentrope using this strength model is shown as a green 
dotted–dashed curve in Supplementary Fig. 3b. As the calculated isentrope is 
more compressible than the static data at pressure up to 300 GPa, we consider 
this model unphysical over this pressure range.

	(2)	 Intermediate-strength model (used in Fig. 2). In our analysis, Y0 has an upper 
limit such that the corrected isentropic P–ρ curve is not more compressible 
than the isentrope determined from 300 K isotherm data (see inset of Sup-
plementary Fig. 3b). Here, Y0 =​ Y0,Static ×​ 1.8. The corrected P–ρ isentrope using 
this strength model is shown as the blue curve in Fig. 2 and Supplementary 
Fig. 3b.

	(3)	 Low-strength model. Y0 =​ Y0,Static =​ 1.45 GPa in equation (8) to match the 
measured Y(P) over the 50–220 GPa range (green circles in Supplementary 
Fig. 2c). The corrected P–ρ isentrope using this strength model is shown as 
the black dashed curve in Supplementary Fig. 3b.
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Grüneisen parameter determination. The Grüneisen parameter (Fig. 3b), γ, may 
be determined by comparing the Hugoniot and measured isentrope for Fe using 
the Mie–Grüneisen expression44

γ
α

=
−
−

=








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
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V V

H S
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The internal energy along the isentrope, ∫= −E P Vd
V

V
S S

0
, where V is the 

volume, S represents isentropic conditions and the subscript 0 represents ambient 
conditions. As the isentrope is calculated only above the initial 60 GPa shock 
(ρ ~ 10.1 g cm–3), in calculating ES, we assume the isentrope from PS =​ 0 – 60 GPa 
is described correctly by Sesame EOS table 2150 (ref. 21). The energy along the 
Hugoniot is defined from the Rankine–Hugoniot relations as, EH =​ PH(V0 −​ V)/2.  
α is the thermal expansivity, KT is the isothermal bulk modulus and CV is the  
specific heat.

Effect of melting along the Hugoniot in the determination of γ​. Under shock 
compression, the onset and completion of melt in Fe occurs from P ~ 222 – 260 GPa, 
T ~ 5,100 – 6,096 K and ρ ~ 12.181 – 12.467 g cm–3 (ref. 52). It is expected that there 
will only be small changes in α, KT and V due to melt as the solid and liquid phases 
both have dense, closely packed structures. For example, based on theoretical 
studies, the volume of fusion of iron is predicted to be small above 100 GPa and to 
decline with pressure53. Changes in the above quantities between liquid and solid 
will also partially cancel in the determination of γ. As = δ

δ
CV

V

E
T

, we also consider 

the effect energy change along the Hugoniot, due to the latent heat of fusion upon 
melting, has on the calculation of γ. Results from molecular dynamic simulations 
indicate that the change in energy at melt is <​1% of Δ​EH−S, and lies well within 
the uncertainties of our calculation54. The Grüneisen parameter will be further 
modified if there are changes in the vibrational modes and electron excitations. At 
low temperatures, vibrational modes will be frozen out. At the high temperatures 
associated with extreme levels of compression along the Hugoniot, the population 
of free electrons increases and the ions eventually become free (heat capacity 
3kB/2 per atom instead of 3kB per atom). Based on atom-in-jellium calculations of 
ionization and displacement, and the Sesame EOS table for Fe21, in the regime of 
these experiments, these effects are not expected to be significant.

Uncertainties in the determination of γ. The uncertainties in γ(ρ) are directly 
related to the pressure uncertainties in the Hugoniot fit and the isentrope, where 
uncertainties in Δ​P and Δ​E in equation (9) are correlated. A PH–ρ fit to Fe 
Hugoniot data is shown in Supplementary Fig. 4 with pressure residuals to the fit 
shown within the inset figure. Uncertainties in the Hugoniot fit were determined 
through standard deviation analysis of the pressure residuals. Our analysis was 
based on the scatter of the Hugoniot data and did not take into account reported 
experimental uncertainties. Additional uncertainties related to the high-pressure 
strength of Fe were not considered.

Bulk sound speed determination. Along the Hugoniot, the Eulerian bulk sound 
speed (Fig. 3), CE

H, of Fe for P >​ Pmelt may be calculated by ref. 55
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Here, δ
δ( )P
V H

 is determined from the Hugoniot fit in Supplementary Fig. 4. γ(ρ) is 

plotted in Fig. 3b. CE
H for the Hugoniot is plotted as the grey short-dashed curve 

in Fig. 3a. The uncertainties in CE
H are calculated from the uncertainties in the 

Hugoniot fit and the uncertainties in γ(ρ).
The bulk sound speed along an isentrope is given by C S

E  =​  δ
δ

−( )V P
V S

, where 

S represents isentropic conditions56. C S
E  along the calculated isentrope in Fig. 2 is 

plotted as the bold blue curve in Fig. 3a.

Pressure offset due to sample temperature. Supplementary Fig. 7 represents 
previous high-pressure studies that show the effect of temperature on the 
compressibility of Fe. Here, P–ρ data for Fe under static compression for different 
starting temperatures are plotted57. Also plotted are Hugoniot data and the more 
recent 300 K static data of ref. 10. The high-temperature data of ref. 57, while 
scattered, give some measure of the effect of thermal pressure as a function 
of sample temperature. The estimate of thermal expansivity in that work is in 
agreement with estimates under shock compression58. Also shown in Supplementary 
Fig. 7 are three P–ρ curves from Sesame EOS table 2150 for Fe21: (1) a 300 K 
isotherm, (2) an isentrope following a 60 GPa shock (TShock =​ 965 K) and (3) an 
isentrope following a 140 GPa shock (TShock =​ 2,900 K). We used these three examples 
to quantify the effect temperature has on pressure and density at TPa pressures. The 
pressure offset from the isotherm as a function of density and pressure is shown 
as an inset in Supplementary Fig. 7. For a hypothetical homogeneous Fe 10-Earth-
mass planet the central pressure is ~7 TPa, assuming Sesame EOS 2150 (refs 2,21). 

At these pressures, the calculated percentage pressure offset due to the initial 
temperatures considered in Supplementary Fig. 7 is negligible.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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